タグ

数学に関するhaseta2005のブックマーク (16)

  • 数学×Pythonプログラミング入門

    中学や高校で学んだ数学を題材にして、Pythonによる数学×プログラミングを学んでみよう。数学の教科書に載っている定理や公式だけに限らず、興味深い数式の例やAI機械学習の基となる例を取り上げながら、数学的な考え方を背景としてプログラミングを学べる連載。

    数学×Pythonプログラミング入門
  • 150 分で学ぶ高校数学の基礎

    [重要なお知らせ (2023/8/12)] 現在,スライドの p.10 に不十分な記述があります.ルートの答えは 0 以上の数に限定することに注意してください (たとえば -3 を 2 乗しても 9 ですが,ルート 9 は -3 ではありません).なお,現在筆者のパソコンが修理中でデータがないので,修…

    150 分で学ぶ高校数学の基礎
  • 「ゲーム制作するなら、これだけは覚えておいたほうがいい」 プログラミングする上で重要な「対数」の考え方

    Unityを学ぶための動画を集めたサイト「Unity Learning Materials」。ユニティ・テクノロジーズ・ジャパンの安原氏が、ゲーム制作に使う数学について解説しました。Part3は、「対数」について。対数における公式とその重要性を例を用いて説明しました。 指数関数とは何か 安原祐二氏(以下、安原):それではパート3ですね。「対数」というテーマでがんばっていきます。パート1から8まである中で、たぶんこのパート3に一番大事な話が含まれているので、ここはぜひ真剣に聞いてもらえればなと思います。 まず、指数関数の話をしましょう。f(x)、イコール例えばa(なにかの数字)があったとしてそのx乗、これを指数関数と呼びます。aは必ず0以上です。負だとこれは考えられないんですよね。0以上です。 どんなグラフになるか。これはまた、aが1以上か1以下かでだいぶ形が変わりますが、1より大きい場合を

    「ゲーム制作するなら、これだけは覚えておいたほうがいい」 プログラミングする上で重要な「対数」の考え方
  • はじめに — 機械学習帳

    import torch x = torch.tensor([1., -1.]) w = torch.tensor([1.0, 0.5], requires_grad=True) loss = -torch.dot(x, w).sigmoid().log() loss.backward() print(loss.item()) print(w.grad)

    はじめに — 機械学習帳
  • 数学×Pythonプログラミング入門 ― 中学・高校数学で学ぶ

    中学や高校で学んだ数学を題材にして、Pythonによる数学×プログラミングを学んでみよう。数学の教科書に載っている定理や公式だけに限らず、興味深い数式の例やAI機械学習の基となる例を取り上げながら、数学的な考え方を背景としてプログラミングを学べる連載。 第1回 中学・高校数学で学ぶ、数学×Pythonプログラミングの第一歩(2021/07/05) 1. 問題解決の方法を学ぶための最強のツールとは 2. 文法からアルゴリズムへ ・コラム 良いアルゴリズムと数学の知識 3. 数学×Pythonを学ぶことの相乗作用 4. 前提知識と目標 5. Pythonプログラミングの準備と便利なライブラリ 第2回 中学数学だけでフェルマーの小定理をプログラミングしてみよう(2021/07/26) 目標: フェルマーの小定理をプログラミングしてみる 1. サンプルプログラム(演算子の利用) ・【まとめ】演

    数学×Pythonプログラミング入門 ― 中学・高校数学で学ぶ
  • 基礎線形代数講座

    4. 公開にあたって ●まえがきに代えて 書は 株式会社 セガ にて行われた有志による勉強会用に用意された資料を一般に公開するもので す。勉強会の趣旨は いわゆる「大人の学び直し」であり、書の場合は高校数学の超駆け足での復習 から始めて主に大学初年度で学ぶ線形代数の基礎の学び直し、および応用としての3次元回転の表現の 基礎の理解が目的となっています。広く知られていますように線形代数は微積分と並び理工系諸分野の 基礎となっており、だからこそ大学初年度において学ぶわけですが、大変残念なことに高校数学では微 積分と異なりベクトルや行列はどんどん隅に追いやられているのが実情です。 線形代数とは何かをひとことで言えば「線形(比例関係)な性質をもつ対象を代数の力で読み解く」 という体系であり、その最大の特徴は原理的に「解ける」ということにあります。現実の世界で起きて いる現象を表す方程式が線形な振

    基礎線形代数講座
  • ディープラーニング入門:Chainer チュートリアル

    Chainer チュートリアル 数学の基礎、プログラミング言語 Python の基礎から、機械学習・ディープラーニングの理論の基礎とコーディングまでを幅広く解説 ※Chainerの開発はメンテナンスモードに入りました。詳しくはこちらをご覧ください。 何から学ぶべきか迷わない ディープラーニングを学ぶには、大学で学ぶレベルの数学Python によるプログラミングの知識に加えて、 Chainer のようなディープラーニングフレームワークの使い方まで、幅広い知識が必要となります。 チュートリアルは、初学者によくある「まず何を学べば良いか」が分からない、 という問題を解決するために設計されました。 初学者は「まず何を」そして「次に何を」と迷うことなく、必要な知識を順番に学習できます。 前提知識から解説 このチュートリアルは、Chainer などのディープラーニングフレームワークを使ったプログ

    ディープラーニング入門:Chainer チュートリアル
  • 生活や実務に役立つ高精度計算サイト

    2023/9/20 地図を利用した機能の提供を終了しました。 ご利用のお客さまにはご不便をおかけしますが、ご理解賜りますようお願い申し上げます。 (提供終了日 2023/9/11) 2023/7/3 ライブラリを追加しました。 野球のOPSの計算 2023/6/20 ライブラリを追加しました。 子供の反復横とびの平均値 2023/3/6 ライブラリを追加しました。 60歳以降働いた場合の年金増加額を計算 2023/2/16 ライブラリを追加しました。 磁束密度の換算 2023/2/9 ライブラリを追加しました。 角速度の換算 2023/1/27 ライブラリを追加しました。 税理士、司法書士等の報酬の源泉徴収税額を計算 2023/1/12 ライブラリを追加しました。 リフィル処方箋の日にち計算 2022/12/21 ライブラリを追加しました。 ポイント獲得時のお得な課金額は? 2022/12

  • 大学の数学/物理を無料で学べるおすすめサイト・サービス6選 - プロクラシスト

    高校生のほけきよ少年にとって、得られる大学以上の物理や数学の情報はwebサイトだけでした。 物理や数学の専門書って高いんですよね。あと、大きな屋じゃないと取り扱っていない。 今ではamazonでいろいろな書籍が手に入るようになりましたが、高いしどんな内容がかかれているかは分からないので、買うのもためらわれます。 そこで今日は 好奇心溢れる高校生 お金はない、単位が危ない、やる気に溢れた大学生 社会人になってから物理や数学趣味で始めたい人 たちのために、無料で大学以上の内容を学べるサイト/サービスを紹介します! 1. 物理のかぎしっぽ 2. EMANの物理学 3. MITの物理学講義(Youtube) 4. 現代数学観光ツアー 物理のための解析学探訪 5. 数学:物理を学び楽しむために 6. 高校数学の美しい物語 まとめ ※ここでいう数学は「物理学のための数学」の範疇を超えません。 1.

    大学の数学/物理を無料で学べるおすすめサイト・サービス6選 - プロクラシスト
  • 大学の理工系の講義ノートPDFまとめ (数学・物理・情報・工学) - 主に言語とシステム開発に関して

    大学と大学院の,理工系の講義ノートPDFのまとめ。 PDF形式の教科書に加え,試験問題と解答,および授業の動画も集めた。 学生・社会人を問わず,ぜひ独学の勉強に役立ててほしい。 内容は随時,追加・更新される。 (※現在,60科目以上) カテゴリ別の目次: (1) 数学の講義ノート (2) 物理学の講義ノート (3) 情報科学の講義ノート (4) 工学の講義ノート ※院試の問題と解答のまとめはこちら。 (1)数学の講義ノート 解析学: 解析学の基礎 (大学1年で学ぶ,1変数と多変数の微分・積分) 複素解析・複素関数論 (函数論) ルベーグ積分 (測度論と確率論の入門) 関数解析 (Functional Analysis) 代数: 線形代数 (行列論と抽象線形代数) 群論入門・代数学 (群・環・体) 有限群論 (群の表現論) 微分方程式: 常微分方程式 (解析的および記号的な求解) 偏微分方程

    大学の理工系の講義ノートPDFまとめ (数学・物理・情報・工学) - 主に言語とシステム開発に関して
  • 【画像45枚あり】フーリエ変換を宇宙一わかりやすく解説してみる

    こんにちは,学生エンジニアの迫佑樹(@yuki_99_s)です. 工学系の大学生なら絶対に触れるはずのフーリエ変換ですが,「イマイチなにをしているのかよくわからずに終わってしまった」という方も多いのではないでしょうか? 難しいのに加えて,教科書もちょっと不親切で,いきなり論理が飛躍したりするんですよね(僕の理解力の問題かもしれませんが) 僕がフーリエ変換について学んだ時に,以下のような疑問を抱きました. 出来る限り難しい式変形は使わずにこれらの疑問を解決できるようにフーリエ変換についてまとめてみました!! 多少厳密性を欠いても,とりあえず理解するという目的の記事なので,これを読んだあとに教科書と付き合わせてみることをおすすめします. それでは,いってみましょう!! 今回の記事は結構気で書きました. フーリエ変換の公式 今回のゴールを確認するべく,まずはフーリエ変換及びフーリエ逆変換の公式

    【画像45枚あり】フーリエ変換を宇宙一わかりやすく解説してみる
  • 「数学の概念」を視覚的かつ美しく表現したグラフィックいろいろ

    数学の美しさ」というものは、数学を深く理解することで初めて得られる感覚と言われます。美しさが伝わると数学嫌いも少しはマシになるのかもしれませんが、数学嫌いの人にはそもそも美しさを伝えることができないということで、歯がゆい思いをしている数学愛好家は多いもの。そんなときに便利な、「数学の概念」を視覚的に理解できるグラフィック集は以下の通りです。 soft question - Visually stunning math concepts which are easy to explain - Mathematics Stack Exchange http://math.stackexchange.com/questions/733754/visually-stunning-math-concepts-which-are-easy-to-explain ◆01:奇数の和 奇数の和が平方数にな

    「数学の概念」を視覚的かつ美しく表現したグラフィックいろいろ
  • NIKKEI STYLEは次のステージに

    キャリア、転職、人材育成のヒントを提供してきた「リスキリング」チャンネルは新生「NIKKEIリスキリング」としてスタート。 ビジネスパーソンのためのファッション情報を集めた「Men’s Fashion」チャンネルは「THE NIKKEI MAGAZINE」デジタル版に進化しました。 その他のチャンネルはお休みし、公開コンテンツのほとんどは「日経電子版」ならびに課題解決型サイト「日経BizGate」で引き続きご覧いただけます。

    NIKKEI STYLEは次のステージに
  • なぜこれが日本式!? 日本人が知らない線と点を使ったかけ算の方法 | ライフハッカー・ジャパン

    「線を引いて交差した点の数でかけ算の答えが分かる」という驚くべき計算方法がありました。 アメリカでは「日の子どもはこうやってかけ算を計算している」と紹介されていますが、日で生まれ育ってきたもののこんな計算方法は初めて見ました。古来インド式の計算方法ではとも言われています。 どのような計算方法なのかは、記事冒頭のビデオを見てもらえれば分かると思います。かけ算をしたい最初の数字の大きい位から順に斜めに線を引き、次の数字も大きい位から順に、今度は最初に引いた線に交差するように反対側から斜めに線を引きます。エリア毎の交差した点の数を左から順番に並べると、かけ算の答えになるというものです。 一体どうしてこの方法でかけ算の答えが導き出せるのか、そのからくりはまったくもって謎ですし、これがなぜ外国では「日の」計算方法だと言われているのかも謎です。とはいえ面白いので、話のネタに覚えておくといいかもし

    なぜこれが日本式!? 日本人が知らない線と点を使ったかけ算の方法 | ライフハッカー・ジャパン
  • 論理的に考えることの強力さを一生忘れなくさせる世界一くだらない問題

    学校で教える内容を増やすとか減らすとかいう話を聞くと、思い出すことがある。 学校の授業で聞いたことで、今も覚えていることといえば、どれも余計なことばかりだ。 人間が不真面目にできているせいかもしれないが、意思伝達から冗長さや不要なものを除いていくと、いつしか何も伝わらなくなってしまうんじゃないかと思ってしまう。 以下で紹介するのも、むかし雑談のように聞いて、今も忘れがたく頭の片すみにあるバカ話である。 この主張を調査によって検証するためには、髪の毛の数を数えるという手間のかかる作業を、膨大な人数分繰り返すことが必要である。 ほとんどの人にとっては不可能であり、また可能な者がいたとしても、この主張の成否を知ることにはあまりにメリットがないので、調査が実施される見込みはほとんどない。 ではこの件は、人類にとって永遠に謎のままなのかといえば、そうではない。 我々は思考の力によって結論を得ることが

    論理的に考えることの強力さを一生忘れなくさせる世界一くだらない問題
  • atpages.jp - このウェブサイトは販売用です! - atpages リソースおよび情報

    This webpage was generated by the domain owner using Sedo Domain Parking. Disclaimer: Sedo maintains no relationship with third party advertisers. Reference to any specific service or trade mark is not controlled by Sedo nor does it constitute or imply its association, endorsement or recommendation.

  • 1