タグ

量子に関するhatatyuのブックマーク (62)

  • 「なぜ時間は過去→未来にしか進まない?」を“量子もつれ”で説明か 未解決問題「時間の矢」に切り込む

    このコーナーでは、2014年から先端テクノロジーの研究を論文単位で記事にしているWebメディア「Seamless」(シームレス)を主宰する山下裕毅氏が執筆。新規性の高い科学論文を山下氏がピックアップし、解説する。 X: @shiropen2 普段感じている時間は、過去から未来へと一方向にしか流れていかない。このような時間が一方向に進む概念を「時間の矢」と呼び、物理学の未解決問題の一つとしている。この時間の矢を説明する新しい考え方を提案したのがこの研究である。 この論文では、宇宙が始まったときには「量子もつれ」は少なかったと主張(宇宙の初期状態が非常に低いもつれエントロピーを持つ状態であったという仮定)しており、これを「量子もつれの過去仮説」(Entanglement Past Hypothesis、EPH)と呼んでいる。 「量子もつれ」とは、2つ以上の量子がどんなに遠く離れていても互いに強

    「なぜ時間は過去→未来にしか進まない?」を“量子もつれ”で説明か 未解決問題「時間の矢」に切り込む
  • 日本人が考案した「量子エネルギーテレポーテーション」をわかりやすく解説 - ナゾロジー

    情報だけでなくエネルギーもテレポートするようです。 東北大学の堀田昌寛氏によって2008年に提唱された量子エネルギーテレポーテーション理論の実証実験が、ここ最近、立て続けに成功しました。 発表当初はその奇抜さゆえ注目されませんでしたが、15年の時を経て、量子エネルギーテレポーテーションは物理学界で最も注目される理論となりました。 量子エネルギーテレポーテーションでは「ゼロ点エネルギーの収集」「真空のゆらぎ」「負のエネルギーの発生」「量子もつれ」「事象の地平面」といったSFの世界のような言葉や概念が飛び交い、私たちの宇宙や空間に対する認識を激変させるものになっています。 量子エネルギーテレポーテーションの応用が進めば、SFでしか耳にしなかったゼロポイントエンジンが実現するでしょう。 今回は「そもそも量子エネルギーテレポーテーションとは何か?」という疑問をわかりやすく解説すると共に、次ページ以

    日本人が考案した「量子エネルギーテレポーテーション」をわかりやすく解説 - ナゾロジー
  • 0.43ミリグラムの物体が発する「重力」の測定に成功! - ナゾロジー

    どんなに小さくても引かれ合います。 オランダのライデン大学(LEI)で行われた研究により、わずか0.43mgの微粒子が発生させる重力を測定することに成功しました。 これまでアインシュタインの重力理論をもとにした研究では、星やブラックホールなど大質量のものを中心に行われており、微小な質量の重力についての検証は進んでいませんでした。 微小な重力を測定する技術が進歩すれば「量子的重ね合わせにある粒子の重力」を測定するなど、量子力学と組み合わせた興味深い重力実験が可能になるでしょう。 しかし0.43mgの微粒子は、いったいどれほどの重力を発していたのでしょうか? 研究内容の詳細は2024年2月23日に『Science Advances』にて公開されました。

    0.43ミリグラムの物体が発する「重力」の測定に成功! - ナゾロジー
  • BitNetから始める量子化入門

    はじめに BitNet、最近話題になっていますね。 そもそも量子化って何?という方もいると思うので、この記事は DeepLearning の量子化から入り、その上で BitNet の触りについて見ていこうと思います。色々とわかってないことがあり、誤読してそうなところはそう書いてるのでご了承ください。 図を作るのは面倒だったので、様々な偉大な先人様方の図やスライドを引用させていただきます。 量子化 DeepLearning における量子化 DeepLearning の学習・推論は基 float32 で行います。これを int8 や Nbit に離散化することを量子化といいます。 計算に使う値は、モデルの重み、アクティベーション(ReLUとか通した後)、重みの勾配等があります。 学習時については一旦置いておいて、この記事では推論における量子化について焦点をあてます。推論時に量子化の対象となる

    BitNetから始める量子化入門
  • 理論物理学者カルロ・ロヴェッリが語る、直感に反する「現実」の存在 | その現実は、実は間違いかもしれない

    その人が書くは、世界中の言語に翻訳され、物理学関連の書籍としては「異例の」売り上げを記録している。新著『ホワイトホール』(未邦訳)もそんな異例の一冊になるのだろうか。仏誌「ロプス」に掲載された、その人、理論物理学者カルロ・ロヴェッリへのインタビューを読めば、邦訳版の発売が待ち遠しくなってくる。 才気あふれる物理学者とは、カルロ・ロヴェッリのような人のことを言うのだろう。この人のを読んだり、講義を聴いたりすると、まるで天才がこちらにも感染したかのように、一瞬にしてすべてが明快になるのである。それはロヴェッリによる科学の解説が「俗受け」を狙ったものだからではない。むしろ、彼は思考の道筋を示し、対立する見解も紹介する。ときにはそういったことが人生においてどんな意味を持つのかについても語る。 ロヴェッリは、もともと理論家だった。「ループ量子重力理論」の提唱者の一人として知られる。ループ量子重力

    理論物理学者カルロ・ロヴェッリが語る、直感に反する「現実」の存在 | その現実は、実は間違いかもしれない
  • 量子もつれを使えば、時間旅行のシミュレーションができるかも?

    量子もつれを使えば、時間旅行のシミュレーションができるかも?2023.11.07 23:0019,578 Isaac Schultz - Gizmodo US [原文] ( 岩田リョウコ ) ちょっと難しい話ですが、思考実験ではなんでもありなのかも!? 量子の世界は、私たちが普段活動している世界とは全然違うルールで動いていて、素晴らしいことから奇妙なことまで、いろんなことが「普通」として存在しています。 これまで物理学者たちは、量子のもつれを利用して閉じた時間的閉曲線のシミュレーションを説明してきています。要するに時間旅行ですね。 強調しておきたいことは、量子粒子は過去に戻ることではありません。最近の研究はもっぱらアインシュタインが普及させた用語の「思考実験」であって、実際の実験の代わりに行なわれる概念的な研究がされています。 これは光速で移動する粒子など、物理学を物理学の限界で実験する際

    量子もつれを使えば、時間旅行のシミュレーションができるかも?
  • 量子的な存在「超流動体」に触れたらどう感じるかが判明! - ナゾロジー

    量子世界を触ってみました。 英国のランカスター大学(LU)で行われた研究によって、量子世界の不思議な性質を持つ超流動体に触れた場合、どんな感じになるかが明らかになりました。 超流動体は目に見えるサイズになった量子的存在であり、水などの通常の流体とは違って粘度や摩擦がゼロという驚くべき性質を持ちます。 また超流動体をコップにためておくと、まるで重力に逆らうように、壁をよじ登って外に漏れだす奇妙な性質も知られています。 既存の研究でも超流動体の性質を解き明かすため多くの研究が行われてきましたが「人間の指が触れたらどんな感じか?」といった人間臭い疑問に関してはスルーされてきました。 今回の研究では、あえてこの疑問に答えるために高精度のセンサーが開発され、超流動体の内部に挿入されました。 粘度も摩擦もなく量子世界に片足を突っ込んだ存在、超流動体の感触とはいったいどんなものなのでしょうか? 結論から

    量子的な存在「超流動体」に触れたらどう感じるかが判明! - ナゾロジー
  • 量子テレポーテーションは、本当はテレポーテーションではないのか。 - Quantum Universe

    量子テレポーテーション。 最近よく聞くバズワードかと思う。 物理学の世界においてこのテレポーテーションは実験もなされ、応用が試みられる段階だ。 しかし一般の方々の中には、当に人類が瞬間移動の術を手に入れたと勘違いされている人もいらっしゃるようだ。 それに対して物理の専門家は、量子テレポーテーションでSF的な瞬間移動装置を作るのはできないことも説明してきた。 この事実を強調することはとても意義があることだと思う。 このプロトコルではある古典的な情報を相手に伝える必要があるため、情報通信の最大速度である光速を超えてテレポーテーションを起こすことはできないのだ。 そのため物理学でいう「因果律」も破ることはない。 ただ認識論的な量子論解釈である現代的なコペンハーゲン解釈では、テレポーテーションの送り手側にとっては確かに瞬間移動のように見える現象ではある。 ただし受け手にとっては瞬間移動ではなく、

    量子テレポーテーションは、本当はテレポーテーションではないのか。 - Quantum Universe
  • ニュートン力学の位置とエネルギーの関係を量子力学で説明することに成功! - ナゾロジー

    2つの物理法則が融合しました。 日の静岡大学で行われた研究によって、ボールや惑星の運動など大きな世界の法則を記したニュートン力学を、光子や電子など小さな世界の法則を記した量子力学を使って説明することに成功しました。 通常、1つの物体は同時に1カ所にしか存在しえないとするニュートン力学と、1つの粒子が同時に複数カ所に存在しており、ある場所に存在する確率が「〇〇%」と記述する量子力学は相容れないものとされています。 研究者たちは2つの世界を記述する異なる法則をどのように融合したのでしょうか? 研究内容の詳細は『PTEP』にて公開されています。

    ニュートン力学の位置とエネルギーの関係を量子力学で説明することに成功! - ナゾロジー
  • 二重スリット実験を物理的スリットではなく「時間の切れ目」で再現成功! - ナゾロジー

    二重スリットは時間軸にあってもいいようです。 英国のインペリアル・カレッジ・ロンドン(ICL)で行われた研究によって、光の波としての性質を証明する二重スリット実験の干渉効果が、2つの物理的スリットではなく、同じ場所で2連続で開閉する時間的スリットでも観測できることが示されました。 通常の空間的二重スリット実験では、光子が空間的に離れた2つのスリットを通過すると、右側を通った光と左側を通った光が干渉し合って干渉縞を作ることが知られています。 今回の新たに行われた時間的二重スリット実験は時間的に先(過去)に通った光と、時間的に後(未来)に通った光が相互作用し干渉縞を作ることを示唆しています。 量子力学の不思議さを象徴する二重スリット実験の肝である「スリット」が空間的隔たりだけでなく時間的隔たりにおいても機能するという結果は非常に驚きです。 研究内容の詳細は2023年4月3日に『Nature P

    二重スリット実験を物理的スリットではなく「時間の切れ目」で再現成功! - ナゾロジー
  • 現在の光を過去の光に干渉させることに成功。二重スリット実験を応用 : カラパイア

    イギリスの研究チームは、光をそれ自身の”過去”にぶつけることに成功したそうだ。 粒子と波の性質をあわせ持つ光は、板に開けられた2つのスリットを通過すると、波のように進路を変えて、互いにぶつかり合うという。 英インペリアル・カレッジ・ロンドンの研究チームは、この有名な「二重スリット実験」を時間で区切られた「二重タイムスリット」にアレンジし、光の振る舞いを観察してみた。 すると光は過去の光と干渉し、周波数が変わることが確認されたのである。

    現在の光を過去の光に干渉させることに成功。二重スリット実験を応用 : カラパイア
  • スティーヴン・ホーキングが残した「ブラックホール情報パラドックス」が解決か、ブラックホールから情報を取り出せる可能性

    量子物理学の法則では、物質の状態が変化してもその「情報」が失われることはなく、変化後の形態に保存されている情報から過去の状態を知ることができます。しかし、巨大な天体が崩壊して形成されるブラックホールにおいては、元の情報が失われてしまう「ブラックホール情報パラドックス」が生じます。このパラドックスについて、イギリス・サセックス大学の物理学教授であるザビエル・カルメット氏らが、ブラックホール情報パラドックスを解決する方法を発見したと報告しました。 Quantum gravitational corrections to particle creation by black holes - ScienceDirect https://doi.org/10.1016/j.physletb.2023.137820 ‘Quantum hair’ could resolve Hawking’s blac

    スティーヴン・ホーキングが残した「ブラックホール情報パラドックス」が解決か、ブラックホールから情報を取り出せる可能性
  • ブラックホールは量子的「重ね合わせ」を破壊する世界の観測者だった - ナゾロジー

    宇宙はブラックホールに見つめられているのかもしれません。 米国のシカゴ大学(University of Chicag)で行われた研究によって、ブラックホールそのものに、量子世界の不思議な現象である「重ね合わせ」を破壊する効果がある可能性が示されました。 量子は「シュレーディンガーの」に代表されるような観測するまで状態が確定しない、複数の可能性の「重ね合わせ」状態となっています。 重ね合わせが破壊された量子は「どこにでもいる」状態から「ここにしかない」状態に変化し、人間の直感に反しない「現実的」な動きをとるようになります。 研究者たちは、宇宙がブラックホールを目のように使って、自分の内側を観測している可能性があると述べています。 宇宙に意識があるかはさておき、宇宙現象そのものが観測者の役割を果たすという考えは非常に先進的なものといえます。 しかし、重力の化け物であるブラックホールのどこに、

    ブラックホールは量子的「重ね合わせ」を破壊する世界の観測者だった - ナゾロジー
  • 史上初!量子トンネル効果によって分子結合が生成される様子を確認! - ナゾロジー

    トンネル効果で新たな分子ができました。 オーストリアのインスブルック大学(University of Innsbruck)で行われた研究によって、世界初となる量子「トンネル効果」を利用した分子反応実験が行われました。 量子力学的トンネル効果を用いた分子反応が実験的に観測できたのは、今回の研究が世界ではじめてとなります。 研究ではトンネル効果が起こる頻度も観測されており、重水素陰イオンと水素分子の間で起きた1000億回の衝突あたり1回のトンネル現象が起こって、新たな分子(水素と重水素が結合したもの)が生成されていることが示されました。 研究者たちはトンネル効果の正確な頻度や発生要因を解明することができれば、核反応をはじめとしたさまざまな化学反応の予測を、より正確に行えるようになると述べています。 研究内容の詳細は2023年3月1日に『Nature』にて掲載されました。 今回の記事ではまず前半

    史上初!量子トンネル効果によって分子結合が生成される様子を確認! - ナゾロジー
  • まるでSF。量子系システムで、時間を巻き戻したり早送りすることができると科学者 : カラパイア

    まるでSFの世界の話のようだが、ヨーロッパの研究グループが、時間を逆転させて、過去の状態に戻す方法を考案したそうだ。しかも実験で実証することにも成功したという。 理論上は可能だったとしても、その方法で実際に人間を若返らせることは難しい。 それでも量子の世界なら、彼らが考案した「巻き戻しプロトコル」を利用することで、まるで映画を巻き戻すかのように、粒子を過去に戻すことができる。 ただ時間を逆行させるだけでなく、物理系の時間を奪うことで時間を早めることすらできるというが、一体どんな方法ならばそんなことが可能になるのだろうか?

    まるでSF。量子系システムで、時間を巻き戻したり早送りすることができると科学者 : カラパイア
  • Q&A形式で分かる 量子コンピューターの 基礎知識

    Fundamentals of Quantum Computing Q&A形式で分かる 量子コンピューターの 基礎知識 次世代コンピューティング技術として注目される量子コンピューター。原理や実装方式など、量子コンピューター関連記事を読む上でのガイドとなる基礎知識をQ&A形式でまとめた。(文:宇津木健 監修:藤井啓祐=大阪大学教授) by MIT Technology Review Japan2022.12.15 35 17 Q:量子コンピューターとはどんなものか? A:量子力学の原理に基づいた新しいコンピューター 量子コンピューターは「量子力学特有の物理状態を積極的に用いて高速計算を実現するコンピューター」と言える。量子力学特有の物理状態とは、たとえば原子や電子、光子などのミクロな世界で見られる「量子重ね合わせ状態」や「量子もつれ状態」という、量子力学によって説明される状態のことを指す。こ

    Q&A形式で分かる 量子コンピューターの 基礎知識
  • 「ワームホール」と「量子テレポーテーション」が本質的に同等の現象と判明! - ナゾロジー

    同じ物体でも視点が違えば、全く異なる形にみえることがあります。 米国のハーバード大学で行われた研究によれば、これまで別物だと考えられていた「通過可能なワームホール」と「量子テレポーテーション」が、実は同じ現象に対して異なる解釈をしていたに過ぎないことが実験的に示されました。 現在物理学者たちの大きな悩みのタネの1つが、非常に小な世界を説明するための量子理論と、星が発する重力など非常に大きな世界を説明する一般相対性理論に、全く互換性がないということです。 しかし新たに行われた研究では量子プロセッサーに通過可能なワームホールの特性を疑似的に組み込むことで、量子力学と相対性理論の結び付けに成功します。 さらに「量子もつれ」の状態にある量子をワームホールの端と端に配置することで、量子の情報がワームホールの内部を一瞬で通過する「ワームホールを用いた量子テレポーテーション」つまり「ワームホールテレポー

    「ワームホール」と「量子テレポーテーション」が本質的に同等の現象と判明! - ナゾロジー
  • NVIDIA,量子コンピュータ向けのプログラミングプラットフォーム「QODA」を発表

    NVIDIA,量子コンピュータ向けのプログラミングプラットフォーム「QODA」を発表 ライター:米田 聡 2022年7月13日から14日まで,東京都内で行われる量子コンピュータ関連イベント「Q2B22 Tokyo」に合わせて,NVIDIAは,量子コンピュータ向けのプログラミングプラットフォーム「Quantum Optimized Device Architecture」(QODA,クォーダ)を発表した。QODAとは,NVIDIAが2013年から手がけてきたGPUコンピューティングプラットフォーム「CUDA」の量子コンピュータ版と理解していい。 NVIDIAは,2021年から量子コンピューティングに関する発表を行っており,今回のQODA発表は,その総仕上げ的な位置づけになるものだ。ゲーマーには直接関係のない話題ではあるが,NVIDIAが量子コンピューティングに取り組んでいる理由を含めて,簡単

    NVIDIA,量子コンピュータ向けのプログラミングプラットフォーム「QODA」を発表
  • 二重スリット実験では1つの粒子が2つの経路に分割されている、広島大が確認

    広島大学は5月2日、光などの粒子は、粒子であると同時に波でもあるという二重性が未解決の問題となっているが、「フィードバック補償法」を中性子干渉に応用することにより、有名な二重スリット実験における、2つの経路を通過した中性子の分割比の定量的な測定に成功したほか、この結果が単一粒子の分割であり、集団の統計的な確率ではないことを示したことを発表した。 同成果は、オーストリア・ウィーン工科大学のHartmut Lemmel氏(仏・ラウエランジュバン研究所兼務)、同・Niels Geerits氏、同・Stephan Sponar氏、広島大大学院 先進理工系科学研究科 量子物質科学 量子光学物性のホルガ・F・ホフマン教授の国際共同研究チームによるもの。詳細は、米物理学会が刊行する物理とその関連する学際的な分野を扱うオープンアクセスジャーナル「Physical Review Research」に掲載され

    二重スリット実験では1つの粒子が2つの経路に分割されている、広島大が確認
  • DNA変異が量子世界のトンネル効果で起きていると判明! - ナゾロジー

    あやふやな存在確率が変異を起こしていました。 英国サリー大学(University of Surrey)で行われた研究によれば、DNAでは従来考えられていたよりも遥かに高い確率でトンネル効果が発生している可能性が高い、とのこと。 量子力学の世界では電子や陽子など小さな粒子の存在確率はあやふやであり、粒子がある場所から別の場所に突然、移動に必要なエネルギーを無視して、トンネルを通ったかのように出現する現象が起こり得ます。 研究結果が正しければ、生物進化の原動力として、量子効果が大きな影響を与えていることになるでしょう。 しかしDNAはいったいどうして量子効果を利用できる性質を獲得したのでしょうか? 研究内容の詳細は2022年5月5日に『Nature Communications Physics』にて公開されています。

    DNA変異が量子世界のトンネル効果で起きていると判明! - ナゾロジー