大学ではないが、東京大学エクステンション・データサイエンススクール・技術実務者コースでは 前提知識 高校までの理系数学と大学1・2年生の数学の一部(偏微分、積分、行列) 数学科目 統計学、最適化 ざっとレベル感をまとめますと 高校までの計算主体の数学 計算力があればなんとかなる 理工系大学教養レベルの定義・定理で入ってくる数学 抽象度は上がるがまだ図が描ける 理工系大学専門レベル抽象度の上がった数学 位相とかはイメージしずらい、高次元・無限次元とかはもう図もイメージもできない 数学科 超絶 薄い記事では、これらのうちどこを言っているのかとイメージしていない人が言っているのでしょうが、アカデミアの方やエンジニアでもR&Dで新たなアルゴリズムを開発担当とかでなければ、大体下記をイメージすれば良いのではないかとのところが自論 高校までの数学はほぼ必須 理工系大学教養レベルの数学はできるだけマスタ
