ディープラーニングによるラーメン二郎全店舗のラーメン画像識別を例に、学習および利用時のインタフェース(Slack、Twitter)に関するノウハウや失敗事例を共有します。 また、ディープラーニングを色々と試した際のノウハウをツール(mxnet-finetuner)としてまとめましたRead less
いつも心に冪等性。古橋です。 リトライと冪等性のデザインパターンの完結編です。 だいぶ間が空いてしまいましたが! 最後に冪等性を実装する汎用的な実装手法についてまとめていきます。 パターン6:操作ログとリクエストIDでUPDATEを冪等にする 同じIDで識別される値がUPDATEされる場合、つまりmutableである値の管理は、一般に冪等に行うのが難しい。 例えば、ユーザーごとに「最後に購入したアイテム」を更新する操作を考えてみると: 1. ユーザーAが最後に購入したアイテムをアイテム1に変更する(UPDATE) 2. ユーザーAが最後に購入したアイテムをアイテム2に変更する(UPDATE) この操作に何の対策もなくリトライを実装した場合、後続のUPDATE処理の結果を古い内容で上書きしてしまう可能性がある: 1. ユーザーAが最後に購入したアイテムをアイテム1に変更する(UPDATE)→
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く