タグ

ブックマーク / www.riken.jp (15)

  • 全ゲノム解析で明らかになる日本人の遺伝的起源と特徴

    理化学研究所(理研)生命医科学研究センター ゲノム解析応用研究チームの寺尾 知可史 チームリーダー(静岡県立総合病院 臨床研究部 免疫研究部長、静岡県立大学 薬学部ゲノム病態解析講座 特任教授)、劉 暁渓 上級研究員(研究当時:ゲノム解析応用研究チーム 研究員; 静岡県立総合病院 臨床研究部 研究員)、東京大学医科学研究所附属ヒトゲノム解析センター シークエンス技術開発分野の松田 浩一 特任教授らの共同研究グループは、大規模な日人の全ゲノムシークエンス(WGS)[1]情報を分析し、日人集団の遺伝的構造、ネアンデルタール人[2]およびデニソワ人[3]由来のDNAと病気の関連性、そしてゲノムの自然選択が影響を及ぼしている領域を複数発見しました。 研究成果は、日人集団の遺伝的特徴や起源の理解、さらには個別化医療[4]や創薬研究への貢献が期待されます。 今回、共同研究グループは、バイオバン

    全ゲノム解析で明らかになる日本人の遺伝的起源と特徴
    htnma108
    htnma108 2024/04/19
  • 量子もつれの伝達速度限界を解明

    理化学研究所(理研)量子コンピュータ研究センター 量子複雑性解析理研白眉研究チームの桑原 知剛 理研白眉チームリーダー(開拓研究部 桑原量子複雑性解析理研白眉研究チーム 理研白眉研究チームリーダー)、ヴー・バンタン 特別研究員、京都大学 理学部の齊藤 圭司 教授の共同研究チームは、相互作用するボーズ粒子[1]系において量子もつれ[2]が伝達する速度の限界を理論的に解明しました。 研究成果は、多数のボーズ粒子が相互に作用することで生じる量子力学的な動きを理解する上で新しい洞察を提供すると同時に、量子コンピュータ[3]を含む情報処理技術における根的な制約を解明することにも寄与すると期待されます。 量子力学で現れる最も基的な粒子であるボーズ粒子が相互作用を通じてどのくらいの速さで量子的な情報を伝達できるのか、という問題は長年未解決でした。 共同研究チームはリーブ・ロビンソン限界[4]と呼

    量子もつれの伝達速度限界を解明
    htnma108
    htnma108 2024/03/30
  • カマキリを操るハリガネムシ遺伝子の驚くべき由来

    理化学研究所(理研)生命機能科学研究センター 染色体分配研究チームの三品 達平 基礎科学特別研究員(研究当時、現 客員研究員)、京都大学 生態学研究センターの佐藤 拓哉 准教授、国立台湾大学の邱 名鍾 助教、大阪医科薬科大学 医学部の橋口 康之 講師(研究当時)、神戸大学 理学研究科の佐倉 緑 准教授、岡田 龍一 学術研究員、東京農業大学 農学部の佐々木 剛 教授、福井県立大学 海洋生物資源学部の武島 弘彦 客員研究員らの国際共同研究グループは、ハリガネムシのゲノムにカマキリ由来と考えられる大量の遺伝子を発見し、この大規模な遺伝子水平伝播[1]がハリガネムシによるカマキリの行動改変(宿主操作[2])の成立に関与している可能性を示しました。 研究成果は、寄生生物が系統的に大きく異なる宿主の行動をなぜ操作できるのかという謎を分子レベルで解明することに貢献すると期待されます。 自然界では、寄生

    カマキリを操るハリガネムシ遺伝子の驚くべき由来
    htnma108
    htnma108 2023/10/20
  • 国宝油滴天目茶碗の曜変(光彩)の秘密を探る

    理化学研究所(理研)光量子工学研究センター 先端光学素子開発チームの海老塚 昇 研究員と開拓研究部 石橋極微デバイス工学研究室の岡 隆之 専任研究員(研究当時)の研究チームは、国宝油滴天目(ゆてきてんもく)茶碗[1]の青紫色の光彩、いわゆる曜変(ようへん)の発色を油滴(油の滴に似た斑点)の反射と釉薬(ゆうやく、うわぐすり)の2次元回折格子[2]構造によって説明しました。 研究成果は油滴天目茶碗や曜変天目(ようへんてんもく)茶碗の鑑賞のために最適な照明を提案できる上、釉薬の配合や焼成(焼き締め、焼結)方法を解明する糸口になると期待されます。 曜変とは漆黒の釉薬が厚くかかった建盞(けんさん。中国の宋時代の10~13世紀に建窯(けんよう。中国福建省にあった名窯)において焼成された、鉄質黒釉(こくゆう)の天目茶碗)の内面に大小さまざまな斑点が浮かび、その周りが暈(かさ)のように青く輝き、その

    国宝油滴天目茶碗の曜変(光彩)の秘密を探る
    htnma108
    htnma108 2023/10/11
  • 赤ちゃんの泣きやみと寝かしつけの科学

    理化学研究所(理研)脳神経科学研究センター親和性社会行動研究チームの大村菜美研究員、黒田公美チームリーダーらの国際共同研究グループは、科学的根拠に基づく赤ちゃんの泣きやみと寝かしつけのヒントを発見しました。 研究成果は、赤ちゃんの泣きに困る養育者のストレスの軽減や、虐待防止につながると期待できます。 黒田公美チームリーダーらは2013年、親が赤ちゃんを運ぶとおとなしくなる「輸送反応[1]」をマウスとヒトにおいて発見しました。しかしこの研究では、運ぶ時間が約20秒間と短く、かつ運ぶのをやめると赤ちゃんは再び泣き出すという課題がありました。 今回、国際共同研究グループは、赤ちゃんが泣いているとき、母親が抱っこして5分間連続で歩くと、泣きやむだけでなく、約半数の赤ちゃんが寝付くことを発見しました。また、親の腕の中で眠った赤ちゃんをベッドに置くとき、赤ちゃんが目覚めやすいのは親から体が離れるタイ

    赤ちゃんの泣きやみと寝かしつけの科学
    htnma108
    htnma108 2022/09/15
  • 蒸発するブラックホールの内部を理論的に記述

    理化学研究所(理研)数理創造プログラムの横倉祐貴上級研究員らの共同研究チームは、量子力学[1]と一般相対性理論[2]を用いて、蒸発するブラックホールの内部を理論的に記述しました。 研究成果は、ブラックホールの正体に迫るものであり、遠い未来、情報[1]を蓄えるデバイスとしてブラックホールを活用する「ブラックホール工学」の基礎理論になると期待できます。 近年の観測により、ブラックホールの周辺のことについては徐々に分かってきましたが、その内部については、極めて強い重力によって信号が外にほとんど出てこられないため、何も分かっていません。また、ブラックホールは「ホーキング輻射[3]」によって蒸発することが理論的に示されており、内部にあった物質の持つ情報が蒸発後にどうなってしまうのかは、現代物理学における大きな未解決問題の一つです。 今回、共同研究チームは、ブラックホールの形成段階から蒸発の効果を直

    蒸発するブラックホールの内部を理論的に記述
    htnma108
    htnma108 2020/07/09
  • 新粒子「ダイオメガ」 | 理化学研究所

    理化学研究所(理研)仁科加速器科学研究センター量子ハドロン物理学研究室の権業慎也基礎科学特別研究員、土井琢身専任研究員、数理創造プログラムの初田哲男プログラムディレクター、京都大学基礎物理学研究所の佐々木健志特任助教、青木慎也教授、大阪大学核物理研究センターの石井理修准教授らの共同研究グループ※「HAL QCD Collaboration[1]」は、スーパーコンピュータ「京」[2]を用いることで、新粒子「ダイオメガ(ΩΩ)」の存在を理論的に予言しました。 研究成果は、素粒子のクォーク[3]がどのように組み合わさって物質ができているのかという、現代物理学の根源的問題の解明につながると期待できます。 クォークには、アップ、ダウン、ストレンジ、チャーム、ボトム、トップの6種類があることが、小林誠博士と益川敏英博士(2008年ノーベル物理学賞受賞)により明らかにされました。陽子や中性子はアップク

    htnma108
    htnma108 2018/05/25
  • 水に特有の物理的特性の起源を解明 | 理化学研究所

    要旨 理化学研究所(理研)放射光科学総合研究センター ビームライン開発チームの片山哲夫客員研究員(高輝度光科学研究センターXFEL利用研究推進室研究員)、ストックホルム大学のキョンホァン・キム研究員、アンダース・ニルソン教授らの国際共同研究グループは、X線自由電子レーザー(XFEL)[1]施設SACLA[2]を利用し、過冷却状態[3]にある水(H2O)の構造を捉えることに成功しました。 水は生命に不可欠な液体ですが、その挙動に関する理解は不完全です。例えば、温度を下げていくときの密度、熱容量[4]、等温圧縮率[5]といった熱力学的な特性の変化は、水と他の液体とでは逆の挙動を示します。そのため、水の熱力学的な特性については長年議論されており、いくつかの仮説が提唱されています。そのうちの一つが、水には密度の異なる二つの相があり、その間を揺らいでいるという仮説です。しかし、温度を0℃未満に下げた

    htnma108
    htnma108 2018/01/11
  • 脳の基本単位回路を発見 | 理化学研究所

    要旨 理化学研究所(理研)脳科学総合研究センター局所神経回路研究チームの細谷俊彦チームリーダー、丸岡久人研究員らの研究チーム※は、哺乳類の大脳皮質[1]が単純な機能単位回路の繰り返しからなる六方格子状の構造を持つことを発見しました。 大脳はさまざまな皮質領野[2]に分かれており、それぞれ感覚処理、運動制御、言語、思考など異なる機能をつかさどっています。大脳は極めて複雑な組織なため、その回路の構造には不明な点が多く残っています。特に、単一の回路が繰り返した構造が存在するか否かは不明でした。 今回、研究チームは、大脳皮質に6層ある細胞層の一つである第5層をマウス脳を用いて解析し、大部分の神経細胞が細胞タイプ特異的なカラム状の小さなクラスター(マイクロカラム)を形成していることを発見しました。マイクロカラムは六方格子状の規則的な配置をとっており、機能の異なるさまざまな大脳皮質領野に共通に存在して

    htnma108
    htnma108 2017/11/04
  • 発達期の脂肪酸不足が統合失調症発症に関連 | 理化学研究所

    要旨 理化学研究所(理研)脳科学総合研究センター分子精神科学研究チームの吉川武男チームリーダー、前川素子研究員らの共同研究グループ※は、マウスを用いた研究により、脳発達期の脂肪酸[1]の摂取不良が統合失調症発症リスクに関与する可能性があることを示しました。 統合失調症は、幻覚、妄想、認知機能異常など、さまざまな症状が現れる精神疾患です。その生涯罹患率は人口の約1%と高く注1,2)、一旦発症すると、完全な回復は困難であることが少なくないため、より効果的な治療法や予防法の開発が望まれています。統合失調症は主に思春期以降に発症しますが、発症しやすさには遺伝要因に加えて環境要因が関わることが知られています。オランダと中国における独立した二つの大飢饉の期間に妊娠期を迎えた母親から生まれた子どもは、将来の統合失調症発症率が約2倍なったという疫学的知見注3,4)をもとに、「妊娠期の一時的な栄養不良」が環

    htnma108
    htnma108 2017/09/21
  • 海馬から大脳皮質への記憶の転送の新しい仕組みの発見 | 理化学研究所

    海馬から大脳皮質への記憶の転送の新しい仕組みの発見 -記憶痕跡(エングラム)がサイレントからアクティブな状態またはその逆に移行することが重要- 要旨 理化学研究所(理研)脳科学総合研究センター理研-MIT神経回路遺伝学研究センターの利根川進センター長と北村貴司研究員、小川幸恵研究員、ディラージ・ロイ大学院生らの研究チーム※は、日常の出来事の記憶(エピソード記憶)が、マウスの脳の中で時間経過とともに、どのようにして海馬から大脳新皮質へ転送され、固定化されるのかに関する神経回路メカニズムを発見しました。 海馬は、エピソード記憶の形成や想起に重要な脳領域です。先行研究により、覚えた記憶は、時間経過とともに、海馬から大脳皮質に徐々に転送され、最終的には大脳皮質に貯蔵されるのではないかとのアイデアがありますが、大脳皮質への記憶の転送に関して、神経回路メカニズムの詳細はほとんど分かっていませんでした。

    htnma108
    htnma108 2017/04/08
  • 化学的手法でクモの糸を創る | 理化学研究所

    要旨 理化学研究所(理研)環境資源科学研究センター酵素研究チームの土屋康佑上級研究員と沼田圭司チームリーダーの研究チームは、高強度を示すクモ糸タンパク質のアミノ酸配列に類似した一次構造[1]を持つポリペプチドを化学的に合成する手法を開発しました。また、合成したポリペプチドはクモ糸に類似した二次構造[1]を構築していることを明らかにしました。 クモの糸(牽引糸)は鉄に匹敵する高強度を示す素材であり、自動車用パーツなど構造材料としての応用が期待されます。しかし、一般的にクモは家蚕のように飼育することができないため、天然のクモ糸を大量生産することは困難です。また、一部の高コストな微生物合成法を除くと、人工的にクモ糸タンパク質を大量かつ簡便に合成する手法は確立されていません。 今回、研究チームはこれまでに研究を進めてきた化学酵素重合[2]を取り入れた2段階の化学合成的手法を用いて、アミノ酸エステル

    htnma108
    htnma108 2017/01/20
  • シビレエイ発電機 | 理化学研究所

    要旨 理化学研究所(理研)生命システム研究センター集積バイオデバイス研究ユニットの田中陽ユニットリーダーらの共同研究グループ※は、シビレエイ[1]の電気器官を利用した新原理の発電機を開発しました。 火力や原子力といった既存の発電方法に代わる、クリーンで安全な発電方法の開発が急がれています。そこで近年、生物機能に着目し、グルコース燃料電池[2]や微生物燃料電池[3]などのバイオ燃料電池が開発されていますが、従来の発電法に比べて出力性能が劣っています。 一方、シビレエイに代表される強電気魚は、体内の電気器官で変換効率が100%に近い効率的な発電を行っています。これは、ATP(アデノシン三リン酸)をイオン輸送エネルギーに変換する膜タンパク質が高度に配列・集積化された電気器官とその制御系である神経系を強電気魚が有しているためです。共同研究グループは、これを人工的に再現・制御できれば、画期的な発電方

    htnma108
    htnma108 2016/06/02
  • 乱雑さを決める時間の対称性を発見 | 理化学研究所

    要旨 理化学研究所(理研)理論科学連携研究推進グループ分野横断型計算科学連携研究チームの横倉祐貴基礎科学特別研究員と京都大学大学院理学研究科物理学宇宙物理学専攻の佐々真一教授の共同研究チームは、物質を構成する粒子の“乱雑さ”を決める時間の対称性[1]を発見しました。 乱雑さは、「エントロピー[2]」と呼ばれる量によって表わされます。エントロピーはマクロな物質の性質をつかさどる量として19世紀中頃に見い出され、その後、さまざまな分野に広がりました。20世紀初頭には、物理学者のボルツマン、ギブス、アインシュタインらの理論を踏まえて「多数のミクロな粒子を含んだ断熱容器の体積が非常にゆっくり変化する場合、乱雑さは一定に保たれ、エントロピーは変化しない」という性質が議論されました。同じ頃、数学者のネーターによって「対称性がある場合、時間変化のもとで一定に保たれる量(保存量)が存在する」という定理が証

    htnma108
    htnma108 2016/04/28
  • 電気で生きる微生物を初めて特定 | 理化学研究所

    要旨 理化学研究所環境資源科学研究センター生体機能触媒研究チームの中村龍平チームリーダー、石居拓己研修生(研究当時)、東京大学大学院工学系研究科の橋和仁教授らの共同研究チームは、電気エネルギーを直接利用して生きる微生物を初めて特定し、その代謝反応の検出に成功しました。 一部の生物は、生命の維持に必要な栄養分を自ら合成します。栄養分を作るにはエネルギーが必要です。例えば植物は、太陽光をエネルギーとして二酸化炭素からデンプンを合成します。一方、太陽光が届かない環境においては、化学合成生物と呼ばれる水素や硫黄などの化学物質のエネルギーを利用する生物が存在します。二酸化炭素から栄養分を作り出す生物は、これまで光合成か化学合成のどちらか用いていると考えられてきました。 共同研究チームは、2010年に太陽光が届かない深海熱水環境に電気を非常によく通す岩石が豊富に存在することを見出しました。そして、電

    htnma108
    htnma108 2015/09/25
  • 1