タグ

Programmingとmathに関するihokのブックマーク (6)

  • 積の和典型 - Shirotsume の日記

    最近積の和典型が話題になっているので書きます。 N個のマス目が横一列に並んでいる状況を考えます。初め、全部のマスは白色です。このうち K 個のマスを選んで黒く塗った時にできるマスの状態は何通りでしょうか? これを こうする これは 通りです。 これを応用すると、次のような問題が解けます。 長さが N であって、総和が M である非負整数列の個数を求めよ。 非負整数列というのは、各要素が負の数でない整数からなる数列です。[1, 2, 3, 4, 5] とか [0, 0, 1, 4, 3] とかです。これの個数を数えるのに、先ほどのマスの数え方を使うことができます。 まず、 M + N - 1 個の白いマス目を用意します。そのあと、そこから N - 1 マス選んで塗ります。こうしたとき、必ず M 個のマスが白いままで残っています。また、マスの両端や黒マスを境目として考えると、白いマスが連続する

    積の和典型 - Shirotsume の日記
  • 「ゲーム制作するなら、これだけは覚えておいたほうがいい」 プログラミングする上で重要な「対数」の考え方

    Unityを学ぶための動画を集めたサイト「Unity Learning Materials」。ユニティ・テクノロジーズ・ジャパンの安原氏が、ゲーム制作に使う数学について解説しました。Part3は、「対数」について。対数における公式とその重要性を例を用いて説明しました。 指数関数とは何か 安原祐二氏(以下、安原):それではパート3ですね。「対数」というテーマでがんばっていきます。パート1から8まである中で、たぶんこのパート3に一番大事な話が含まれているので、ここはぜひ真剣に聞いてもらえればなと思います。 まず、指数関数の話をしましょう。f(x)、イコール例えばa(なにかの数字)があったとしてそのx乗、これを指数関数と呼びます。aは必ず0以上です。負だとこれは考えられないんですよね。0以上です。 どんなグラフになるか。これはまた、aが1以上か1以下かでだいぶ形が変わりますが、1より大きい場合を

    「ゲーム制作するなら、これだけは覚えておいたほうがいい」 プログラミングする上で重要な「対数」の考え方
  • JavaScript で parseInt / parseFloat を使わない方が良い理由

    となるのが原因です。parseInt というのは、文字列を解析して整数値(int)を返すグローバル関数であり、引数をまず文字列に変換する仕様となっております。その段階で 0.0000005 が "5e-7" という文字列に変換されてしまい、その文字列の先頭の 5 だけが数字として解析されてしまったため、結果として parseInt(0.0000005) === 5 となりました。 なぜ String(0.000005) === "0.000005" に、String(0.0000005) === "5e-7" になるのかについては、この記事の最後で余談として説明します。 整数化には Math.trunc を使おう このように、parseInt は文字列を引数にすることを前提にしているため、速度の面でも可読性の面でも「小数値を整数値に変換したい」という場合に使うのは望ましくありません。最も望

  • 乱数にコクを出す方法について

    深津 貴之 / THE GUILD / note @fladdict アニメーションの監修で、「 Random();の代わりに、(Random()+Random()+Rrandom()+Random()+Random())/5.0f; を使うと、動きにコクが出る」と言ったら、ピュアオーディオ扱いされるのですが・・・これは根拠のあるアルゴです。 2016-11-03 11:29:43 深津 貴之 / THE GUILD / note @fladdict 乱数のコクをチューニングする話をすると、なぜピュアオーディオ扱いされるのか? みんな乱数の波動を、もっと体で感じようよ。全然ヴァイブレーションが違うよ。 2016-11-03 11:36:47

    乱数にコクを出す方法について
  • プログラマーとして社会人になったけど高校数学を1から独学している - It's okay to be weird

    この春からプログラマーとして働くようになりました。今まで色々と開発系の勉強を中心にしていましたが、最近はもっぱら高校数学を独学しています。 勉強しようと思ったきっかけ、教材として使っている『長岡の教科書』の紹介について書いていきます。 勉強しようと思ったきっかけ まず前提として、僕は高校を中退しています。空白期間を経て情報系の専門学校に入ったのですが、その際に取った高認も、英語だけを受験して取得したという経緯もあり、高校以降の勉強の知識がごっそり抜けてしまっています。 その後、専門学校に入ってから基情報技術者試験を受験することになったのですが、そこで出てきた集合や対数、数列といった知識が全くないため(Σってなに状態)、数学の知識の欠如を感じたものです。 なんとなく数学コンプレックスを抱えたまま過ごしている折に、2014年10月発売のWEB+DB PRESS Vol.83のインタビューにて

    プログラマーとして社会人になったけど高校数学を1から独学している - It's okay to be weird
  • 機械学習の基礎知識としての数学 - learning.ikeay.net

    私がAI人工知能)や機械学習って難しいナーと感じるところは、数学の前提知識がある程度必要なところです。 GoogleからTensorflowが出たときに、私もいっちょやってみるかなんて思ったのですが、参考にした記事もなかなか難しくてあんまり理解できなかったのを覚えてます。途中まで理解出来てたのに、急に数式が出てきて「なるほどわからん!」ってなることが多かったですね。 「というかエンジニアなのに数学苦手なのw」とビックリされる方もいらっしゃると思いますが、エンジニアっつったって、今の御時世理系出身エンジニアばかりじゃないんです。でもエンジニア女子やってると自動でリケジョ扱いされるから面白いですね。 当面の目標としては、AIの中でも機械学習を学んでいきたいので(DeepLearningできるようになりたい!)、あると嬉しい数学の知識としては以下です。 線形代数 確率・統計 微分・積分 AI

    機械学習の基礎知識としての数学 - learning.ikeay.net
  • 1