本講演では,数理最適化の基本的な枠組みを概観することで,数理最適化を本格的に学習するきっかけを与えることを目的にしています. このスライドでは,双対問題をはじめとする多くの重要な概念の説明を省略しています.もし,このスライドを読み終えて数理最適化を深く理解できたと感じたなら,それはたぶん気のせいです.…
こんにちは。数理最適化ギルドでエンジニアをしている加藤です。 ある自社プロダクトの開発を通じて因果推論について勉強する機会がありました。因果推論は統計の分野ですが、その中で数理最適化の技術が使えることを知り、とても面白かったのでその内容をシェアしようと思います。具体的には組合せ最適化問題のひとつである最小カット問題が、因果推論のタスクの一部である識別可能性に利用できるという話をします。 前半は因果推論についての概説で特に予備知識は仮定していないです。後半は計算時間やネットワークフローなどのアルゴリズムを知っていると読みやすいと思います。 因果推論とは 因果推論の目的 統計的因果推論とは事象の間の因果効果を実験データや観測データから推定することを目的とした統計学の一分野です。単に因果推論といった場合は統計的因果推論を含むより広い概念を指すことがありますが、簡単のため以下では因果推論といえば統
計算量についてのお話です。対象は、プログラミング経験はあるが計算量のことを知らない初心者から、計算量のことを知っているつもりになっている中級者くらいです。 数式を見たくない人にとっては読むのが大変かもですが、深呼吸しつつ落ちついて読んでくれるとうれしいです。 それから、この記事が自分には合わないな〜と思ったときは、(別の記事を Qiita とかで検索するよりも)この記事の一番下の 参考文献 にある本を読むことをおすすめします。Amazon の試し読みで無料で読めます*1。 TL; DR 関数の増加度合いのことをオーダーと呼ぶよ 計算量は、入力サイズ(など)を受け取ってアルゴリズムの計算回数(など)を返す関数だよ その関数のオーダーについての議論がよく行われるよ オーダーを上から抑えるときは \(O\)、下から抑えるときは \(\Omega\) を使うよ オーダーを上下両方から抑えたいときは
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く