2020年4月29日のブックマーク (2件)

  • 【GIF多め】ギャラリー:目で見る複素数 - アジマティクス

    2乗して-1になる数「」と、実数を使って「」と表される数を複素数といいます。 複素数は、和をとったり積をとったり逆数をとったりといろいろできるわけですが、それらを図示してみるときれいな構造が見えることがあります。 この記事は、細かい解説はそこそこにして、複素数を眺めてうわ〜きれいだね〜素敵だね〜っていう記事です。 複素平面 任意の複素数は、平面上の一点として表すことができます。 今でこそ「複素数といえば平面」というイメージがあるかもしれませんが、「複素数を平面上の一点として表す」というのは驚くほど画期的なアイデアです。 それまで、複素数は「方程式を解く途中にだけ出てきて、いざ解かれたあかつきには消えてしまう」という「便宜的な数」「虚構の数」と思われていました。 ガウスによって「複素平面」のアイデアが導入されてようやく複素数が図形的な表れを伴った。複素数にはそんな歴史があるようです。 複素数

    【GIF多め】ギャラリー:目で見る複素数 - アジマティクス
    investan
    investan 2020/04/29
    「もしも数学が美しくなかったら、おそらく数学そのものが生まれてこなかっただろう。人類の最大の天才たちをこの難解な学問に惹きつけるのに、美のほかにどんな力があり得ようか」誰かが言った数学への言葉。
  • フィボナッチ数列とは、ソリティアである - アジマティクス

    フィボナッチ数列 1,1から始めて、「前2つの項を足したものが次の項」という構造をしている数列が「フィボナッチ数列」です。具体的に書き下すとこういうものです。 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, ... 確かに「前2つの項を足したものが次の項」になっていますね。言うまでもないですが、ここに現れている一つ一つの数が「フィボナッチ数」です。 番目のフィボナッチ数を「」と表すことにすると、フィボナッチ数列は以下の式で定義されます。 (前二つの和が次の数) (1,1から始める) これだけで十分です。これだけ指定してさえあれば、以降の数値は一意に定まります。 そしてこれは「0,1」から始めて足していっても結局同じ数列が現れるので、「0番目のフィボナッチ数」つまりとして0をおくこともあります。 さて、このフィボナッチ数の間にはさまざ

    フィボナッチ数列とは、ソリティアである - アジマティクス
    investan
    investan 2020/04/29
    発想力が素晴らしい。見事にフィボナッチ数列の概念をビジュアライズしている。