手始めにいくつかのデータを触ってみましょう。データとして Iris データセットとして知られす、とても単純な花のデータベースを使いましょう。 150 のアヤメの花の測定値があります: sepal length, sepal width, petal length そして petal width で Iris setosa Iris versicolor Iris virginica それぞれの品種毎に。 データセットを Python オブジェクトとして読み込みましょう:
手始めにいくつかのデータを触ってみましょう。データとして Iris データセットとして知られす、とても単純な花のデータベースを使いましょう。 150 のアヤメの花の測定値があります: sepal length, sepal width, petal length そして petal width で Iris setosa Iris versicolor Iris virginica それぞれの品種毎に。 データセットを Python オブジェクトとして読み込みましょう:
ネットワークの重みや各ニューロンがどういう入力の時に発火するのかが、学習していく過程で各時刻可視化されてとても良い教材です。 http://playground.tensorflow.org/ うずまきのデータセットに関して「中間層が1層しかないとうずまき(線形非分離な問題)は解けない」という誤解があるようなので、まずは1層でできるという絵を紹介。なお僕のタイムライン上では id:a2c が僕より先に気付いていたことを名誉のために言及しておきます。 で、じゃあよく言われる「線形非分離な問題が解けない」ってのはどういうことか。それはこんな問題設定。入力に適当な係数を掛けて足し合わせただけでは適切な境界を作ることができません。 こういうケースでは中間層を追加すると、中間層が入力の非線形な組み合わせを担当してくれるおかげで解けなかった問題が解けるようになります。 1つ目のデータセットでは特徴量の
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く