タグ

ブックマーク / kita.dyndns.org (1)

  • 黄金原本更新, 【最短理解】なぜ5×3ではなく3×5なのか, たくさんの反響ありがとうございます - ワタタツの日記!(2010-11-13)

    ワタタツ、あ違った、ワタクシの日記です。 日々の生活や興味のあるニュース, WILLCOM の PHS, Mac OS X, Linux, トランペットなどなど。ですから、かけ算の定義から立式が 3×5 となるわけです。 5×3と立式した場合は、5つごとりんごのグループが3つあることになってしまいますから全く別の事象を表したことになります。 何が定義で何が定理なのか 5×3と立式することと、3×5 を立式した後で数の性質から 3×5=5×3 とした場合とは全く違うことがわかるでしょうか。 つまり立式はかけ算の定義からなされることです。 その瞬間、単位がとれ、抽象的な数の世界に入ります。この自然数や実数の世界ではかけ算が可換で、自由に順番を入れ換えられますが、それは紛れもなく数に関する定理です。定義からいきなり可換なわけではありません。 自然数の世界に持ち込んだらもはや可換ですから、好きなよ

    jujubea
    jujubea 2010/11/15
    こりゃ問題文の書き方が悪いな。「一皿にりんごが3個のってる皿が5枚あります」なら3×5が正解でいいんだろうけど、この問題文を式で表現すると5×3になってしまう
  • 1