タグ

ブックマーク / data.gunosy.io (3)

  • RedshiftとBigQueryでよく使うSQLの違いTips - Gunosyデータ分析ブログ

    データ分析部インターン生の小川です。インターンでは主に動画収集のロジック実装に取り組んでいました。 Gunosyではログの管理にRedshiftとBigQueryを使用しています。 サービスはAWS上で動いているものも多いので基はRedshiftで、ログの量が多いものやアドホック分析に用いるものはBigQueryに格納しています。 この2つのサービスでSQLの書き方が微妙に異なるところがあり、もどかしい経験をしたので、今回は、よく使うSQLの文法でRedshiftとBigQueryで表現が異なる所をまとめてみようと思います。 BigQueryの導入についてはこちらの記事をご覧ください。 また、この記事ではBigQueryはStandard SQLで記述していきます。 data.gunosy.io 日付・時刻関数 現在時刻(UTC) 現在時刻(JST) 現在の日付(UTC) 現在の日付(J

    RedshiftとBigQueryでよく使うSQLの違いTips - Gunosyデータ分析ブログ
    kenzy_n
    kenzy_n 2018/02/28
  • データ分析部が開発・運用するバッチ アプリケーション事情 - Gunosyデータ分析ブログ

    はじめに こんにちは、データ分析部の森です。 この記事ではGunosyデータ分析部がどのような視点に基づいてバッチアプリケーション(以下、バッチ)を開発・運用しているかしているのかを紹介します。 クライアントアプリ開発やAPI開発と比較してバッチ開発のノウハウなどをまとめたWeb記事の数は少なく感じます。 また、言語に関わらずWebフレームワークの数に対して、バッチフレームワークの数も少数です。 このような点を踏まえると一般的には難易度の高くない(ノウハウを必要としない、フレームワークに頼る必要のない)、もしくはニーズがあまりないなどの印象があるのかもしれません。 一方で我々は日々バッチ開発を行い、数多くの地雷を踏んできました。 これらの経験を踏まえてどのような点に気をつけているのかについて共有します。 理想的には多くの方の経験を共有して、建設的な議論に発展するとうれしいです。 はじめに

    データ分析部が開発・運用するバッチ アプリケーション事情 - Gunosyデータ分析ブログ
    kenzy_n
    kenzy_n 2017/10/11
  • さくっとトレンド抽出: Pythonのstatsmodelsで時系列分析入門 - Gunosyデータ分析ブログ

    久しぶりの投稿になってしまいましたが、ニュースパス(現在CM放映中!!)開発部の大曽根です。 作業中はGrover Washington Jr のWinelightを聴くと元気が出ます。参加ミュージシャンが素晴らしいですね。 なぜ時系列分析をするのか 季節調整 実演 おまけ: 時間別に見てみる まとめ 今後 なぜ時系列分析をするのか 数値を非常に重視している弊社では、数値を知るためのツールとしてRedashやChartioおよびSlackへの通知を活用しています。現在の数値を理解する上では、長期のトレンド(指標が下がっているのか、上がっているのか)を知ることが重要です。しかし、日々変化するデータ(特に売上やKPIと言われる指標)は、ばらつきも大きく、変化を適切に捉えることが難しいこともあります。 特にSlackなどへの通知を行っていると、日々の変化に囚われがちです。例えば、弊社ではニュース

    さくっとトレンド抽出: Pythonのstatsmodelsで時系列分析入門 - Gunosyデータ分析ブログ
    kenzy_n
    kenzy_n 2017/02/02
    時系列解析でトレンド分析に役立てる
  • 1