本稿は、2020年7月27日に公開した記事を、2022年7月5日の最新情報に合わせて改訂したものです。各項目の内容をアップデートし、無料ではなくなった『Deep Learning with PyTorch』をカットした代わりにベストセラーである『An Introduction to Statistical Learning』を追記しました。
はじめに ニューラルネットの基礎 ニューラルネットの順伝搬 1つの層での処理 多層での処理 順伝搬のまとめ ニューラルネットワークの学習 勾配法 微分の難しさ 誤差逆伝搬法 問題 誤差逆伝搬法 まずは損失の和を計算する 微分の連鎖律 出力での損失の微分 中間層での損失の微分 式を見直す はじめに ニューラルネットのフレームワークを使うと、誤差逆伝搬は既に実装されているため、ほとんど意識すること無く使えてしまいます。言わばブラックボックスという状態です。ここで誤差逆伝搬法について学んでおくことで、ニューラルネットがいかにして学習を行っているのかを理解しましょう。 数式が相応に難解なため、一番最後まで飛んでしまっても構いません。 最終的に得られる式を見れば、誤差逆伝搬法の由来を理解できるかと思います。 ニューラルネットの基礎 ニューラルネットの順伝搬 1つの層での処理 まずニューラルネットワー
この教科書は、はてなサマーインターンの講義資料として作成されたものです: https://github.com/hatena/Hatena-Textbook 機械学習編1(基礎編)では、最も初歩的な分類器である単純パーセプトロンを題材に、機械学習の基本について勉強しました。機械学習編2(実用編)では、実問題に機械学習を適用する上でのコツや、各種の機械学習アルゴリズムの使い分け、高次元データへの対処法、といったトピックについて解説していきます。 実問題に機械学習を適用する タスクを定義する データを特徴ベクトルに変換する 評価方法を決める 正解データの正例と負例は均等に ベースラインとなる手法を実装する 実データに向き合うときの心構え 機械学習のワークフロー 1. 前処理 データセット作成 サンプリング 特徴抽出 欠損値・欠測値への対応 値のスケーリング 特徴選択 次元削減 2. 学習 モデ
This is a long overdue blog post on Reinforcement Learning (RL). RL is hot! You may have noticed that computers can now automatically learn to play ATARI games (from raw game pixels!), they are beating world champions at Go, simulated quadrupeds are learning to run and leap, and robots are learning how to perform complex manipulation tasks that defy explicit programming. It turns out that all of t
本コーナーは、インプレスR&D[Next Publishing]発行の書籍『TensorFlowはじめました ― 実践!最新Googleマシンラーニング』の中から、特にBuild Insiderの読者に有用だと考えられる項目を編集部が選び、同社の許可を得て転載したものです。 『TensorFlowはじめました ― 実践!最新Googleマシンラーニング』(Kindle電子書籍もしくはオンデマンドペーパーバック)の詳細や購入はAmazon.co.jpのページをご覧ください。プログラムのダウンロードは、「TensorFlowはじめました」のサポート用フォームから行えます。 本書はGoogleが公開している機械学習ライブラリ「TensorFlow(テンソルフロー)」を初めて使う読者のためのチュートリアルガイドです。画像の多クラス分類問題「CIFAR-10」テーマに、機械学習に初めて触れるエンジニ
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く