4-1. N! の高速な計算 $N! = 1 \times 2 \times 3 \times 4 \times \cdots \times N$ を計算してみましょう。 $N!$ は場合の数を求める問題でよく出てきて、こんな感じのものが求まります。 $1, 2, ..., N$ が書かれたトランプのカードが 1 枚ずつあるとき、これを一列に並べる順番は何通りあるか? 例えば、$N = 13$ の場合 $13! = 6,227,020,800$ 通り、のように計算できます。 また、$N!$ は二項係数 $_NC_K$ を求めるのにも使われます。 $N!$ が求まれば、$_NC_K = N! \div K! \div (N-K)!$ で掛け算・割り算するだけで計算できますね。 $N$ 個の区別できるボールから $K$ 個を選ぶ方法は何通りか? これが $_NC_K$ になります。例えば、$N