BERTはGoogleが2018年末に発表した自然言語処理モデルです。「文脈」を考慮した処理が特徴的であり、言語理解を評価する11個のタスクについて最高精度を達成し、今や標準的なモデルとしての地位を確立しています。 本書は、自然言語処理の近年における発展に大きな役割を果たし、かつ応用上も有用であるBERTの入門書です。前半で自然言語処理や機械学習について概説したのち、BERTによって実際にさまざまなタスクを解いていきます。具体的には、文章分類・固有表現抽出・文章校正・類似文章検索・データの可視化を扱います。データセットの処理から、ファインチューニング(BERTを特定の言語タスクに特化させるための学習)、性能の評価までの一連の流れを体験することで、BERTを自分で使えるようになることを目標とします。 なお、BERTで処理を行うためのライブラリとして、深層学習の言語モデルを扱ううえでよく使用さ