機械学習の実験における悩みの一つに実験の再現性があります。再現性は実験を共同研究者に引き継いたり、ソフトウェアエンジニアにモデルをデプロイしてもらう時に問題になります。残念ながら、機械学習で利用するライブラリは数も多く、アップデートも頻繁に行われます。そのため動作する開発環境を維持、共有するのは難しい問題と言えます。 そこでデータサイエンティストが実験結果を他人に引き継ぐことを容易にするテンプレート、Cookiecutter Docker Science を作ってみました。このテンプレートは機械学習の実験環境を Docker コンテナ上に爆速で構築できます。仮想環境なのでライブラリ群の不足やバージョンの不一致に悩まされず実験結果を確実にシェアできます。 また Docker でコンテナを作ったり、削除したり設定したりといった作業の煩雑さを低減するための機能を提供しています。そのため、データサ