Deploy ML on mobile, microcontrollers and other edge devices
Jupyterとは? まず、Jupyterの紹介をすると、これは、Python(IPython)による対話的なデータ分析処理をWebブラウザ上の「ノートブック」で実施するツールです。下記のように、Markdownで記述した文章とコード、そして、その実行結果が記録されていきます。 作成したノートブックは、JSON形式でエクスポートしてGitHubで共有することができます。GitHubのWebサイトでは、自動的にノートブック形式にレンダリングして表示されるようになっています。現在は、Tex形式の数式がうまく表示されない問題があるようですが、下記のような感じになります。 ・ロジスティック回帰による二項分類器の作成 また、受け取ったノートブックは、自由にコードを修正して再実行することができますので、データ分析のコードとその説明をノートブックにまとめておけば、「実行できる教科書」が実現することになり
はじめに Floydhub とはDeepLearningのためのHerokuのようなサービスでTensorFlowやChainerを使ったプログラムをCloudで動かすことができます。 Floydhubの特徴は Chainer, TensorFlow, Keras, theano等が使える アカウントの作成にクレジットカードは必要ない 今回はとりあえずアカウントの作成からGet Startedをやってみます。 アカウントの作成 アカウントは無料で作れます。クレジットカードは今は必要ありません。https://www.floydhub.com からSign Upすると以下のWelcome Pageに移ります。 Get Started Setup floyd-cli アカウント作成後、メールが届いてるので認証します。 ターミナル上で、適当な作業ディレクトリに移動してからfloyd-cliをイン
はじめに この記事はいまさらながらに強化学習(DQN)の実装をKerasを使って進めつつ,目的関数のカスタマイズやoptimizerの追加,複数入力など,ちょっとアルゴリズムに手を加えようとした時にハマった点を備忘録として残したものです.そのため,DQNの解説記事というよりも初心者向けKerasTipsになります. 実行環境 Python3.5.2 Keras 1.2.1 tensorflow 0.12.1 DQNとは DQN(DeepQNetwork)がDeepMindから発表されて2年以上経つので,もはやいたる所に解説記事や実装サンプルがあり,ここでの詳しい解説は不要だと思います.が,ざっくり言うと,Q-Learningという強化学習手法のQ関数部分を,深層学習により近似することで、動画像から直接Q値を推定することを可能にした学習手法です. DQNの理論としては ゼロからDeepまで学
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く