タグ

Pythonとprogrammingに関するkomlowのブックマーク (9)

  • 高速化のためのPython Tips - のんびりしているエンジニアの日記

    皆さんこんにちは お元気ですか?私は元気です。 Pythonにおける高速化手法を掲載してみます。 簡単なコード並びに索引のような感じで引けるようなイメージで作成しました。 日の目次です。 Pythonにおける高速化の必要性 Pythonの高速化 高速化の手順 Profiling的な条件 計測コード Pythonの基的な書き方部分 rangeよりxrangeを(Python2.7) リストの生成 文字列結合 Import文のコスト 関数呼び出しのコスト ドットを避ける yieldを使う Numpyに関するTips Numpyを使用して基演算を高速化する Numpyの要素にアクセスする演算をしない Numbaで手早く高速化 その他高速化ツール Cython Dask PyPy 感想並びに展望 参考文献 Pythonにおける高速化の必要性 PythonC++Javaと比較すると非

    高速化のためのPython Tips - のんびりしているエンジニアの日記
  • Pythonの内部構造::PyObject ― CPythonの実装から内部に迫る | POSTD

    こんにちは、皆さん。 Python言語の実装に深く踏み込む前に、Pythonの主要な概念を知っておく必要があります。それは非常にシンプルで、 全てがオブジェクトだ ということです。このことは、Pythonの内部構造を学習する際の最初のステップであり、この旅の入り口でもあります。 今回の主なテーマは、Pythonのオブジェクトが実装レベルでどのように扱われているかを理解することです。私たちは、 Python 2.7.8 のCPythonの実装について話をしていきます。 Pythonのソースをダウンロードし、解凍することを想定しているので、ソースコードへの参照は全て、ルートフォルダからの相対的な参照になります。 PyObjectとPyVarObject Pythonでは全てがオブジェクトです。Pythonで使われている以下のものは文字通り、全て C の PyObject です。 関数 スライス

    Pythonの内部構造::PyObject ― CPythonの実装から内部に迫る | POSTD
  • Black Hat Python

    Read it now on the O’Reilly learning platform with a 10-day free trial. O’Reilly members get unlimited access to books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers. When it comes to creating powerful and effective hacking tools, Python is the language of choice for most security analysts. But just how does the magic happen? In Black Hat Python, th

    Black Hat Python
  • Python とマクロ、インポートフックと抽象構文木 - forest book

    どちらがきっかけだったのか忘れてしまいましたが、wikipedia:メタプログラミング か wikipedia:抽象構文木 について調べているうちに マクロ が出てきました。 私の中では、マクロと聞くと、C 言語の、プリプロセッサ (コンパイルの前処理) でコードに置き換えるものを漠然とイメージします。改めてマクロって何だったっけ?何が嬉しいのだっけ?と考えてみると、基的なことが分かっていないことに気付いたのでマクロについて調べ直してみました。 マクロとは wikipedia からマクロの定義を引用します。 A macro (short for "macroinstruction", from Greek μακρο- 'long') in computer science is a rule or pattern that specifies how a certain input s

  • ((Pythonで) 書く (Lisp) インタプリタ)

    Peter Norvig / 青木靖 訳 このページには2つの目的がある。コンピュータ言語の実装について一般的な記述をすることと、Lispの方言であるSchemeのサブセットをPythonで実装する具体的な方法を示すことである。私はこのインタプリタをLispy (lis.py)と呼ぶ。何年か前に私はJavaとCommon LispでSchemeインタプリタを書く方法を示した。今回の目標は、アラン・ケイが「ソフトウェアのマクスウェル方程式」と呼んだところの簡潔さと取っつきやすさを可能な限り実現するということだ。 SchemeのサブセットLispy の構文と意味論 コンピュータ言語の多くは様々な構文的な決まり(キーワード、中置演算子、カッコ、演算子優先順、ドット記法、セミコロンなど)を持っているが、Lisp族言語の1つとして、Schemeの構文はすべてカッコ付きの前置記法であるリストを基とし

  • プログラマーのための確率プログラミングとベイズ推定

    プログラマーのための確率プログラミングとベイズ推定¶PythonとPyMCの使い方¶ベイズ推定(Bayesian method)は,確率推論のためのもっとも適切なアプローチであるにもかかわらず,書籍を読むとページ数も数式も多いので,あまり積極的に読もうとする読者は少ないのが現状である.典型的なベイズ推定の教科書では,最初の3章を使って確率の理論を説明し,それからベイズ推論とは何かを説明する.残念ながら多くのベイズモデルは解析的に解くことが困難であるため,読者が目にするのは簡単で人工的な例題ばかりになってしまう.そのため,ベイス推論と聞いても「だから何?」と思ってしまうのである.実際,著者の私がそう思っていたのだから. 最近の機械学習のコンテストで良い成績を収めることができたので,私はこのトピックを復習しようと思い立った. 私は数学には強い方である.しかしそれでも,例題や説明を読んで頭の中で

  • Pythonにサヨナラを - HackerNews翻訳してみた

    「HackerNews翻訳してみた」が POSTD (ポスト・ディー) としてリニューアルしました! この記事はここでも公開されています。 Original article: Saying Goodbye To Python by Ian Bicking ずっと先延ばしにしてきた記事を書きます。決別宣言ではなく(ずいぶん前に離れていますし)、ただ自分が歩んできた道を振り返ったに過ぎません。Pythonの世界に別れを告げてずいぶん経つのに、これまでサヨナラを言う勇気がなかったのです。 何年も前にPythonを卒業したとはいえ多少の愛着は残っており、戻る可能性もあると思っていました。PyCon 2013への提議が却下されたことは頭にきましたが(面白い話をしようと思っていたのに!)、この件で自分はもうPythonコミュニティの一員ではないのだと確信しました。 Pythonは私が初めて(もしかした

  • RubyとPythonの違いからガベージコレクタを理解する - ワザノバ | wazanova.jp

    http://patshaughnessy.net/2013/10/24/visualizing-garbage-collection-in-ruby-and-python Pat Shaughnessyが、ブタペストで開催されたRUPY2013でのプレゼンの前半を自らのブログで紹介しています。 ガベージコレクタは、「ゴミを集める」という行為だけでなく、「新しいオブジェクトのためにメモリをあてがう。」「不要なオブジェクトを見つける」「不要なオブジェクトからメモリを取り戻す。」という、人間の心臓が血液を浄化するような働きをしている。 この簡単なコードサンプルを見ると、RubyPythonの記述はよく似ているが、それぞれの言語の内部でのインプリの仕組みは違う。 1) Rubyのメモリ Rubyは、コードが実行される前に、数千のオブジェクトを先につくり、それをリンクされたfree listに置

  • ソフトシンセを作りながら学ぶPythonプログラミング

    最先端のアルゴリズムがgithubなどから手軽に入手できるようになったことで、ビジネスの現場では、アルゴリズムやモデルの改善より、 アノテーションデータの質や量を改善する方が実用化を目指す上でよりコストメリットのいいアプローチとなりつつあります。 発表では、従来のモデル改善を中心としたMLOpsの考え方と異なり、データ(アノテーションデータ)改善を中心としたMLOpsの考え方をご紹介します。

    ソフトシンセを作りながら学ぶPythonプログラミング
  • 1