タグ

学習とAIに関するkurojzのブックマーク (6)

  • OpenAI API の ファインチューニングガイド|npaka

    1. ファインチューニングの利点ファインチューニングの利点は、次のとおりです。 (1) プロンプトよりも高品質な応答 (2) プロンプトに収まりきらないより多くの例の適用 (3) プロンプトの短縮によるトークン数 (コスト) の節約 (4) プロンプトの短縮による処理時間の短縮 モデルは膨大な量のテキストで事前学習されており、このモデルを効果的に利用するため、プロンプトに手順や応答の例を指定する手法が使われます。この例を使用してタスクの実行方法を示すことを「Few-Shot」と呼びます。 ファインチューニングで、プロンプトに収まりきらないより多くの例で学習することにより、さまざまなタスクでより良い結果を達成できるようになります。プロンプトに多くの例を指定する必要はなくなります。これによりトークン (コスト) が節約され、処理時間も短縮されます。 2. ファインチューニングの使用料金ファイン

    OpenAI API の ファインチューニングガイド|npaka
  • 社内勉強会で生成AIについて発表したので70ページの資料を公開する! - Qiita

    前置き 毎週金曜日夕方に行われる社内勉強会にて、先日生成AIについて発表しました。折角なので少し加筆修正した資料を公開します。進化のスピードが早く、一時期傷気味に陥ってましたが改めて昨今の生成AI関連の基となるインプットを目指しました。 ※資料内冒頭に記載してますが、AIの専門家ではないので認識や説明に誤りがある可能性があります。 当方も勉強中なので、「ここ違うよ」や「これの説明もあるといいんじゃない」など様々なコメント大歓迎です! 資料 資料目次 AIの基 機械学習について 深層学習について 機械学習の種類 教師あり学習の得意なこと 教師あり学習のイメージ 教師なし学習の得意なこと 教師なし学習のイメージ 強化学習の得意なこと 生成AIについて 生成AIとは 生成AIの位置付け 生成AI利用例 代表的なサービス例 日における盛り上がり 生成AI市場規模 AGIとは AGIは近い?

    社内勉強会で生成AIについて発表したので70ページの資料を公開する! - Qiita
  • LLM の LoRA / RLHF によるファインチューニング用のツールキットまとめ |npaka

    「LLM」の「LoRA」「RLHF」によるファインチューニング用のツールキットをまとめました。 1. PEFT「PEFT」は、モデルの全体のファインチューニングなしに、事前学習済みの言語モデルをさまざまな下流タスクに適応させることができるパッケージです。 現在サポートしている手法は、次の4つです。 ・LoRA ・Prefix Tuning ・P-Tuning ・Prompt Tuning ◎ LLaMA + LoRA 「Alpaca-LoRA」は、「LLaMA」に「LoRA」を適用して「Alpaca」の結果を再現するためのコードが含まれているリポジトリです。「finetune.py」がLoRAの参考になります。 ・tloen/alpaca-lora ◎ RedPajama-INCITE + LoRA 「INCITE-LoRA」は、「RedPajama-INCITE」に「LoRA」を適用する

    LLM の LoRA / RLHF によるファインチューニング用のツールキットまとめ |npaka
  • GPT-1→GPT-2→GPT-3→GPT-3.5→ChatGPT→GPT-4までの進化の軌跡と違いをまとめてみた|スタビジ

    当サイト【スタビジ】の記事では、昨今のAIの進化のきっかけになっているGPTシリーズについてまとめていきたいと思います。GPT-1から始まりGPT-2、GPT-3、そしてChatGPTであるGPT-3.5、GPT-4と進化してきました。この進化の軌跡と違いについて解説していきます。 こんにちは! データサイエンティストのウマたん(@statistics1012)です! この記事では最近のAIブームの火付け役になったGPTシリーズについて簡単にまとめていきたいと思います。

    GPT-1→GPT-2→GPT-3→GPT-3.5→ChatGPT→GPT-4までの進化の軌跡と違いをまとめてみた|スタビジ
  • ChatGPTは馬鹿じゃない! 真の実力を解放するプロンプトエンジニアリングの最前線

    はじめに ChatGPTをはじめとしたLLMを使いこなすための必須スキル、プロンプトエンジニアリング について解説します。 最近は動きが早すぎてキャッチアップが難しくなっていますが、特に以下のような手法が注目されているようです。 In-context Learning (ICL) Chain-of Thought (CoT) Zero-shot CoT ReAct Self-Consistency Program-aided Language Model (PAL) 今回は、6つのテクニックの中からPart1として、ICL、CoT、そしてZero-shot CoTの3つを紹介します。 これらのテクニックは、ChatGPTをはじめとするLLMのポテンシャルを最大限に引き出すために必要不可欠です。 さらに、各テクニックを詳しく解説した論文も紹介していますので、是非ご一読ください。 In-con

    ChatGPTは馬鹿じゃない! 真の実力を解放するプロンプトエンジニアリングの最前線
  • VRoid(3D)とLora(追加学習)でオリキャラを学習させてAI画像を一次創作の肥やしにする|852話|note

    こんにちは、852話です。 今日は追加学習の話ではありますが理論的なものと使い方的な工程はすっ飛ばして手法と考え方のみの記事になります。 AIによる画像生成、色々楽しんでいる人が多い中「これで自分のオリジナルキャラクターが出力できたらな」と思う人もいると思います。絵が描ける人であれば自キャラを描いた絵をそのままLoraで追加学習させれば簡単にAIで出力できますが、では絵が描けない人は……という話です。 今回は以下のソフトを使います。 ・VRoidStudio(3D) ・場合によってはペイントソフト ・Lora(追加学習/colab可) ・WebUI等のLoraが使えるAI まずVRoidStudioで3Dモデルを作ります。着せ替えみたいな形で3Dモデルが作れます。 今回はこちらの「デモ子」を作成しました。 3D「デモ子」で、VRoid上でモーション、ポーズを付けられるので30枚程度スクショ

    VRoid(3D)とLora(追加学習)でオリキャラを学習させてAI画像を一次創作の肥やしにする|852話|note
  • 1