
このエントリは全9回を予定する18卒新人ブログリレーの第3回です. はじめまして.今年度よりリクルートテクノロジーズに入社した河野 晋策です. 7月からQassチームにて検索ロジックの改善を行っています. Qassチームは,検索基盤の運用や検索ロジックの改善を行っているチームです. 詳しくは以下の記事をご覧ください. 検索組織の機械学習実行基盤 リクルート全社検索基盤のアーキテクチャ、採用技術、開発体制はどうなっているのか Elasticsearch+Hadoopベースの大規模検索基盤大解剖 本記事の想定読者:普段Jupyter notebook・Jupyter Lab,Google Colaboratoryを使っている方,またこれから使おうと考えている方 本記事の概要:jupyter notebookの知見共有 はじめに Jupyter notebookとは 近年,データの重要性が様々な
bicycle1885.hatenablog.com こちらの記事を拝見していて、ちょっと気になったので注釈。 PythonやRを使っている人で、ある程度重い計算をする人達には半ば常識になっていることとして、いわゆる「for文を使ってはいけない。ベクトル化*1しろ。」という助言があります。 これは、PythonやRのようなインタープリター方式の処理系をもつ言語では、極めてfor文が遅いため、C言語やFortranで実装されたベクトル化計算を使うほうが速いという意味です。 昔からよくこういう言い方がよくされるが、本当にPythonのfor文は遅いのだろうか。 聞くところによるとRのfor文はガチで遅いそうだが、Pythonの計算が遅いのはインタープリタ方式だからでも、for文が遅いからでもない。もちろん、Pythonはインタープリタなので遅いし、for文だって極めて遅い。しかし、これはPyt
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く