タグ

2018年3月1日のブックマーク (5件)

  • Keras / Tensorflowで転移学習を行う - Qiita

    概要 Keras(Tensorflowバックエンド)で、画像認識の分野で有名なモデルVGG16を用いた転移学習を行いました。 そもそもディープラーニングとは?Kerasって何?という方は、こちらの記事をご参照下さい。 転移学習とファインチューニングの違い 転移学習とファインチューニングは、どちらも既存のモデル(今回はVGG16)を応用したディープラーニングの学習方法です。その為この2つはよく混同されていますが、厳密には異なります。 参考:Quora: What is the difference between transfer learning and fine tuning? ざっくりと説明すると、違いは以下になります。 転移学習:既存の学習済モデル(出力層以外の部分)を、重みデータは変更せずに特徴量抽出機として利用する。 ファインチューニング:既存の学習済モデル(出力層以外の部分)を

    Keras / Tensorflowで転移学習を行う - Qiita
  • 転移学習:機械学習の次のフロンティアへの招待 - Qiita

    Deleted articles cannot be recovered. Draft of this article would be also deleted. Are you sure you want to delete this article? 機械学習を実務で使う場合、「ではお客様、ラベルデータを・・・」と申し出て色よい返事が返ってくることはあまりありません。また、例えば自動運転車を作るときに、データが足りないからその辺流してくるか、お前ボンネットに立ってデータとってな、とするのは大変です。 NICO Touches the Walls 『まっすぐなうた』 より そこで必要になってくるのが転移学習です。 転移学習とは、端的に言えばある領域で学習させたモデルを、別の領域に適応させる技術です。具体的には、広くデータが手に入る領域で学習させたモデルを少ないデータしかない領域に適応さ

    転移学習:機械学習の次のフロンティアへの招待 - Qiita
  • TensorFlow で画像認識 (CNN 法)

    ページでは、Google Brain Team によって開発されたオープンソースの機械学習エンジンである、TensorFlow (テンソルフロー) を利用して、ディープラーニングの一種である、CNN 法 (Convolutional Neural Network, 畳み込みニューラルネットワーク, ConvNet とも呼ばれる) によるモデルを構築して、画像の自動クラス分類器 (判別器) を作成し、実行する方法を紹介します。 もし、まだ TensorFlow をインストールしていない場合は、「TensorFlow をインストール」の手順にてインストール作業を行いましょう。 今回使用するデータ (CIFAR-10 データセット) 手順では、TensorFlow の Convolutional Neural Network のチュートリアル にしたがって、CIFAR-10 (読み方は、シー

  • ねこと画像処理 part 3 – Deep Learningで猫の品種識別 – Rest Term

    ねこと画像処理。 (みかん – 吉祥寺 きゃりこ) 前回の ねこと画像処理 part 2 – 検出 では画像内のの顔を検出する方法を紹介しましたが、今回はディープラーニングの技術を用いての品種を識別したいと思います。 学習データ ねこと画像処理 part 1 – 素材集めでは、自分で撮影した写真を学習データとして使うと書いたのですが、都内のカフェ等で出会えるに限ってしまうと品種の偏りが大きくなってしまうので、ここではしぶしぶ研究用のデータセットを使うことにします。。ただ、Shiba Inuがあるのに日が誇るMike Nekoが含まれていないのでデータセットとしての品質は悪いと思います。 The Oxford-IIIT-Pet dataset オックスフォード大学が公開している動物画像のデータセットです。その内画像は2400枚、クラス数は12で1クラスにつき200枚あります。今

    ねこと画像処理 part 3 – Deep Learningで猫の品種識別 – Rest Term
  • 画像枚数50枚で機械学習させようと思ったときの手段メモ - Qiita

    Deleted articles cannot be recovered. Draft of this article would be also deleted. Are you sure you want to delete this article? 概要 機械学習超初心者の僕が、画像を使ったWebアプリを思いついたので、 「ディープラーニング使えばなんとかなるやろ〜」 って思っていたら上手く行かず、社内の名だたる機械学習の先輩方に相談させていただいたときのメモ。 今回やりたいこと 飲み会で「好きなタイプの芸能人はだれ?」と訊かれたときに答えることができるWebサイト 必要なUX ユーザーがWebサイトに来訪する 50人位のモデルの画像が出てくるので、1枚1枚に対して「タイプ」「ちょっと好き」「普通」「少し苦手」「だいぶ苦手」のうち1つを選択して入力する その結果から、ユーザーが好き

    画像枚数50枚で機械学習させようと思ったときの手段メモ - Qiita