タグ

algorithmとprogrammingに関するm_ohashiのブックマーク (7)

  • BLOG::broomie.net: 言語処理のための機械学習入門

    東工大の奥村先生監修、高村先生著の「言語処理のための機械学習入門」が発売されました。これは読まなければ!と思い、さっそく手に入れました。書の感想は当にシンプルな一言に尽きます。 「大学時代にこのがほしかった。。。」 書の目次の中見出しまでを以下に引用させていただきます。 言語処理のための機械学習入門 (自然言語処理シリーズ 1) 高村 大也 1. 必要な数学的知識 1.1 準備と書における約束事 1.2 最適化問題 1.3 確立 1.4 連続確率変数 1.5 パラメータ推定法 1.6 情報理論 1.7 この章のまとめ 2. 文書および単語の数学的表現 2.1 タイプ、トークン 2.2 nグラム 2.3 文書、文のベクトル 2.4 文書に対する前処理とデータスパースネス問題 2.5 単語ベクトル表現 2.6 文書や単語の確率分布による表現 2.7 この章のまとめ 3. クラスタリン

  • BLOG::broomie.net: 機械学習の勉強を始めるには

    thriftとかhadoopなど,何やらいろいろと手を出してしまい,ここのところブログの更新が滞ってしまっていますが,今日は前から書きたかったトピックについて自分へのメモの意味も含めて記しておきたいと思います. はじめに 最近,といっても結構前からなのですが,海外のブログなどで「機械学習の勉強を始めるガイドライン」についてのエントリーがいくつか見られ,かつ,議論も少し盛り上がっています.僕は機械学習が好きなだけで,専門というにはほど遠いのですが,僕も一利用者としてはこのトピックに関してはとても興味があります. 機械学習というと,色々な数学的な知識が必要であったり,統計学や人工知能の知識も必要になったりしまったりと,専門的に学ぶ機会が無かった人にとっては興味が湧いてもなかなか始めるには尻込みしてしまうことかと思います.今日紹介するエントリーは,そんな方々にヒントになるような内容になっていると

  • Bayesian Sets - mots quotidiens.

    Bayesian Sets (Ghahramani and Heller, NIPS 2005)は Google Sets と同じようなことをベイズ的に行うアルゴリズムです。 いくつかアイテムを入れると, それを「補完する」ようなアイテムを 返してくれます。 これは NIPS の accepted papers が出た去年の8月から気になっていて, 会議ではオーラルの発表もあって大体のやっていることはわかった ものの, 何と(会議の時も!)論文がなく, 直接Hellerに連絡して もらえるように頼んでいたところ, Online proceedings の締切りがあった 時に連絡があって, 読めるようになりました。(リンクは下のページ参照) 岡野原君に先に 紹介 されてしまいましたが, 以下は, 岡野原君が書いていない話。 Bayesian Sets は, アイテム集合 D に対して,

  • Bayesian Setsによる関連文書検索システムStupa - mixi engineer blog

    都会よりも田舎が好きなfujisawaです。Bayesian Setsというアルゴリズムを使って、関連する文書を高速・高精度に検索できるシステムを作成しましたので、そのご紹介をさせていただきます。 Bayesian Setsとは Bayesian Setsはいくつかアイテムを入力すると、それを補完するようなアイテムを返してくれるアルゴリズムです。原著論文の先頭に"Inspired by Google Sets"と書かれているように、Google Setsを参考にして作成されています。実際にどのような出力が得られるか、Google Setsに以下の表のクエリを検索して試してみますと、 クエリ 出力 apple, banana chocolate, strawberry, vanilla, cherry, ... apple, macintosh software, windows, mac,

    Bayesian Setsによる関連文書検索システムStupa - mixi engineer blog
  • GT Nitro: カーレーシング・ドラッグレーシングゲーム - Google Play のアプリ

    GT Nitro: Car Game Drag Raceは、典型的なカーゲームではありません。これはスピード、パワー、スキル全開のカーレースゲームです。ブレーキは忘れて、これはドラッグレース、ベイビー!古典的なクラシックから未来的なビーストまで、最もクールで速い車とカーレースできます。スティックシフトをマスターし、ニトロを賢く使って競争を打ち破る必要があります。このカーレースゲームはそのリアルな物理学と素晴らしいグラフィックスであなたの心を爆発させます。これまでプレイしたことのないようなものです。 GT Nitroは、リフレックスとタイミングを試すカーレースゲームです。正しい瞬間にギアをシフトし、ガスを思い切り踏む必要があります。また、大物たちと競いつつ、車のチューニングとアップグレードも行わなければなりません。世界中で最高のドライバーと車とカーレースに挑むことになり、ドラッグレースの王冠

    GT Nitro: カーレーシング・ドラッグレーシングゲーム - Google Play のアプリ
  • Soundex - Wikipedia

    Soundex is a phonetic algorithm for indexing names by sound, as pronounced in English. The goal is for homophones to be encoded to the same representation so that they can be matched despite minor differences in spelling.[1] The algorithm mainly encodes consonants; a vowel will not be encoded unless it is the first letter. Soundex is the most widely known of all phonetic algorithms (in part becaus

  • 集合知と多量情報の可視化アルゴリズム本 Programming Collective Intelligence | fladdict

    先日購入したBen FryのVisualizing Dataとあわせて買ってみた、Programming Collective Intelligence: Building Smart Web 2.0 Applications というもかなりよさげ。 端的にいうとWEB2.0コンテンツ用に特化した、統計解析の理論とアルゴリズムの解説。 いわゆる「これを買った人はこれを買ってます」を筆頭に、市場予測やスパム抽出、特徴データのグルーピングなど、集合知を抽出するアルゴリズムが大集合してる感じです。各アルゴリズムの原理の説明から、シンプルな自力実装までが書いてある感じっぽい。こういう系は数式だけあって理解不能か、動作がライブラリに隠蔽されてて理解不能で手が出せなかったけど、このあれば大分理解できそう。以下、乗ってる内容メモ。 ・Amazon的なリコメンドのしくみ ・データのグループ化(クラス

  • 1