タグ

2019年10月30日のブックマーク (3件)

  • SQLAlchemy入門 接続とSQL実行 | Python学習講座

    engine apiと接続 SQLAlchemyが提供するengineとは、接続を始めとしたSQLAlchemyの機能を使用するための起点となるオブジェクトです。 engineだけでも最低限のDB操作、つまりデータベースへの接続の作成、SQLステートメントの送信、および結果の取得を行うことができます。 engineオブジェクトは、create_engine関数を呼び出してデータソース名を渡すことによって作成されます。 engineを使用した簡単なサンプルを見てみましょう。sqlite3のオンメモリのDBに接続し、SQLを実行してみます。 from sqlalchemy import create_engine engine = create_engine('sqlite:///:memory:') # 接続する with engine.connect() as con: # テーブルの作成

  • Python: ユニットテストを書いてみよう - CUBE SUGAR CONTAINER

    ソフトウェアエンジニアにとって、不具合に対抗する最も一般的な方法は自動化されたテストを書くこと。 テストでは、書いたプログラムが誤った振る舞いをしないか確認する。 一口に自動テストといっても、扱うレイヤーによって色々なものがある。 今回は、その中でも最もプリミティブなテストであるユニットテストについて扱う。 ユニットテストでは、関数やクラス、メソッドといった単位の振る舞いについてテストを書いていく。 Python には標準ライブラリとして unittest というパッケージが用意されている。 これは、文字通り Python でユニットテストを書くためのパッケージとなっている。 このエントリでは、最初に unittest パッケージを使ってユニットテストを書く方法について紹介する。 その上で、さらに効率的にテストを記述するためにサードパーティ製のライブラリである pytest を使っていく。

    Python: ユニットテストを書いてみよう - CUBE SUGAR CONTAINER
  • Python: python-fire の CLI 自動生成を試す - CUBE SUGAR CONTAINER

    今回は Google が公開した python-fire というパッケージを試してみた。 python-fire では、クラスやモジュールを渡すことで、定義されている関数やメソッドを元に CLI を自動で生成してくれる。 ただし、一つ注意すべきなのは、できあがる CLI はそこまで親切な作りではない、という点だ。 実際にユーザに提供するような CLI を実装するときは、従来通り Click のようなフレームワークを使うことになるだろう。 では python-fire はどういったときに活躍するかというと、これは開発時のテストだと思う。 実装した内容をトライアンドエラーするための CLI という用途であれば python-fire は非常に強力なパッケージだと感じた。 今回使った環境は次の通り。 $ sw_vers ProductName: Mac OS X ProductVersion:

    Python: python-fire の CLI 自動生成を試す - CUBE SUGAR CONTAINER