タグ

algorithmに関するmachatakaのブックマーク (3)

  • wilson-score

  • 集合とかベクトルの類似度の計算のメモ - 唯物是真 @Scaled_Wurm

    Pythonで実装する類似度計算 - Screaming Loud #1283. 共起性の計算法 ↑この辺りの記事を見て、集合とかベクトルの類似度の計算の記事を下書きのまま放置していたことを思い出したので書き上げた。 類似度の計算のコードを書いたのでそれを載せるだけにしようかと思ったのですが、知っている人にしか伝わりそうにないので自然言語処理でよく使う話の概要だけでも書いときます。 導入 自然言語処理の分野では単語の意味を比較するときに、ある単語の周り(文脈)に出てきた単語のベクトル(文脈ベクトル)の類似度を計算することがある。 これは「ある単語の意味はその周囲に出現する単語によって特徴づけられている」という仮説に基づいていて、文脈ベクトルが似ていれば似たような意味、似たような状況で使われる単語が多いということが言えるからである。 Distributional semantics - Wi

    machataka
    machataka 2014/03/15
     分かりやすい
  • b-Bit MinHashによる高速かつ省スペースな類似度判定 | SmartNews開発者ブログ

    ゴクロの浜です。ネットカフェでコードを書くのが好きです。 前回のエントリーでも触れられていますが、SmartNewsはホットな話題をユーザにお届けするために、常時、膨大な数のツイートおよびURLをクロールしています。こうして収集した記事に対し、様々な分析が施されますが、その中でも重要な処理の1つに、記事の類似度判定があります。内容の似通った記事をインデックスから発見し、グループ化する処理です。 毎秒、大量の新着記事が到着することから、この類似度判定は高速に実行する必要があります。また、インデックスを全てメモリに載せているので、類似度判定を実現する際の空間効率も要求されます。 今回は、SmartNewsが高速かつ省スペースな類似度判定のために使用しているb-Bit MinHashと呼ばれる手法を紹介します。2年前に、PFIの岡野原さんが非常に分かりやすい解説記事を書かれており、エントリー

  • 1