本講座では計8回にわたり、ディープニューラルネットワークの原理と実装について 説明してきた。ニューラルネットワークの原理は基本的には 勾配降下法であり、その基盤となっているのが関数の微分可能性である。 ニューラルネットワークにはさまざまな形態が存在するが、 画像処理・画像認識の場合は畳み込みニューラルネットワークが非常に 有効であることがわかっている。また、ニューラルネットワークの 出力形式や損失関数を変えることにより、ニューラルネットワークが 物体検出や奥行き推定など、さまざまなタスクに利用可能であることを紹介した。 さて、本講座は「真面目なプログラマのための」ディープラーニング入門、 と銘打っている。真面目なプログラマとは何か? 諸説いろいろあるだろうが、 多くのプログラマは、ソフトウェア開発において 仕様の明確さや、 システムの効率・堅牢性、そして 保守のしやすさといったものを 追求
# !wget https://dl.fbaipublicfiles.com/fasttext/vectors-crawl/cc.ja.300.vec.gzで落とせます model = gensim.models.KeyedVectors.load_word2vec_format('cc.ja.300.vec.gz', binary=False) repat = re.compile(r'^[あ-ん\u30A1-\u30F4\u4E00-\u9FD0]+$') vocab_list = [w for w in list(model.vocab.keys())[10000:50000] if len(w) > 2 and repat.fullmatch(w) and w[-1] != 'っ' and w not in list(ww_df.word) and w not in list(sw
Working as a core maintainer for PyTorch Lightning, I've grown a strong appreciation for the value of tests in software development. As I've been spinning up a new project at work, I've been spending a fair amount of time thinking about how we should test machine learning systems. A couple weeks ago, one of my coworkers sent me a fascinating paper on the topic which inspired me to dig in, collect
オミータです。ツイッターで人工知能のことや他媒体で書いている記事など を紹介していますので、人工知能のことをもっと知りたい方などは気軽に@omiita_atiimoをフォローしてください! 【決定版】スーパーわかりやすい最適化アルゴリズム 深層学習を知るにあたって、最適化アルゴリズム(Optimizer)の理解は避けて通れません。 ただ最適化アルゴリズムを理解しようとすると数式が出て来てしかも勾配降下法やらモーメンタムやらAdamやら、種類が多くあり複雑に見えてしまいます。 実は、これらが作られたのにはしっかりとした流れがあり、それを理解すれば 簡単に最適化アルゴリズムを理解することができます 。 ここではそもそもの最適化アルゴリズムと損失関数の意味から入り、最急降下法から最適化アルゴリズムの大定番のAdamそして二階微分のニュートン法まで順を追って 図をふんだんに使いながら丁寧に解説 し
ディープマインドの研究者が、アフォーダンス理論を利用して強化学習を効率化する手法を開発している。同理論を用いれば、試行錯誤を繰り返さなくても、実行不可能な選択肢をあらかじめ除外できるという考えだ。 by Karen Hao2020.07.26 62 61 9 10 私たちは椅子を見たら、その形状や色に関係なく、座ることができると知っている。魚は水の中なら場所に関係なく泳げると知っている。これはアフォーダンス理論と呼ばれる。心理学者ジェームズ・J・ギブソンによる造語だ。知的な存在が世界を見るとき、彼らは単に物体とその関係性だけでなく、その可能性にも気づくとする理論である。つまり、椅子は座る可能性を「アフォードする」(与える)。水は泳ぐ可能性を与える。アフォーダンス理論により、動物の知性の一般化が可能である理由の一部を説明できる。私たちがたいていの場合に、新しい物体との関わり方をすぐに理解でき
読みました。アプリケーション開発エンジニア視点で読んで同僚に勧められる素晴しい内容でした。本稿はエンジニア視点のレビューになります。 効果検証入門〜正しい比較のための因果推論/計量経済学の基礎 技術評論社 (2019/1/18) 安井 翔太 (著), 株式会社ホクソエム (監修) Kindle版/紙版両方あり 目次と構成 序 嘘っぱちの効果とそれを見抜けないデータ分析 1章 セレクションバイアスとRCT 2章 介入効果を測るための回帰分析 3章 傾向スコアを用いた分析 4章 差分の差分法(DID)とCausalImpact 5章 回帰不連続デザイン(RDD) 付録 RとRStudioの基礎 終 因果推論をビジネスにするために まず効果検証とは何かという導入と共にビジネスの現場でありがちな誤りのある検証について解説があります。この誤りの原因となるセレクションバイアスと理想的な比較方法であるラ
本記事では、データサイエンティスト、AIエンジニアの方がPythonでプログラムを実装する際に気をつけたいポイント、コツ、ノウハウを私なりにまとめています。 AIエンジニア向け記事シリーズの一覧 その1. AIエンジニアが気をつけたいPython実装のノウハウ・コツまとめ(本記事) その2. AIエンジニアが知っておきたいAI新ビジネス立案のノウハウ・コツまとめ 2020年4月に書籍を、出版しました。 【書籍】 AIエンジニアを目指す人のための機械学習入門 実装しながらアルゴリズムの流れを学ぶ(電通国際情報サービス 清水琢也、小川雄太郎 、技術評論社) https://www.amazon.co.jp/dp/4297112094/ 本投稿は、上記の書籍に書ききれなかった 「AIエンジニアが、Pythonでプログラムを実装する際に気をつけたいことのまとめ」 です。 本記事の内容は、あくまで筆
機械学習系の話題が多い昨今ですが、実際触ってみると期待した精度・結果が出ないなんてことはよくあることではないでしょうか。 機械学習特有の性質として、データ自体がモデルを変化させ、結果として業務に影響を与えたりします。 仮に、機械学習屋さんが精度が出るモデルを構築したと言っても、それを導入するときに、システム全体での品質の維持に苦労したりします。 ということで、不確実性の大きい機械学習系開発についての、設計・テスト戦略でどうやってリスクを低減していけるかが一つカギになってくると思い、方法論について勉強しましたので、そのメモです。 非常に参考にしたのはこちら。 arxiv.org テストそのもののテクニックなどは、一般的なテスト駆動開発に関する書籍を合わせてをご参考ください。 テスト駆動開発 作者:Kent Beck発売日: 2017/10/14メディア: 単行本(ソフトカバー) テスト駆動P
本記事は、当社オウンドメディア「Doors」に移転しました。 約5秒後に自動的にリダイレクトします。 「レコメンドつれづれ」は、レコメンド手法の概念や実装方法を中心に、レコメンドに関する基礎的な内容から最近流行りの技術まで幅広くご紹介する連載です。第3回は、レコメンドの評価方法について、代表的な評価方法・指標をピックアップしてご紹介します。 こんにちは。アナリティクスサービス本部の小田です。レコメンドについて考察していく連載の第3回です。 第1回 協調フィルタリングのコンセプトを知る 第2回 協調フィルタリングの実装 第2回では、協調フィルタリングの実装を行いました。本連載では今後各種手法を実装しながら比較していく予定ですが、その前にレコメンドの評価について確認したいと思います。といっても、レコメンド全体の評価となるとシステムやユーザビリティの評価など広範にわたりますので、今回はアルゴリズ
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く