タグ

2024年5月14日のブックマーク (4件)

  • Embeddingモデルを使ったベクトル化のしくみ、fine-tuning手法を解説

    自己紹介
 • 名前
 ◦ 早野 康太
 • お仕事
 ◦ 自然言語モデルの改善 • 今期期待のアニメ
 ◦ ユーフォ、無職転生、夜のクラゲ
 このすば、ガールズバンドクライ
 • 最近の映画
 ◦ デデデデおもろかったです
 ▪ 幾田りら声優うまスンギ
 ▪ 原作もバチクソ良かった
 • 今後の映画
 ◦ ウマ娘、ぼざろ、デデデデなど アジェンダ
 • Transformerモデル
 ◦ Attentionについて
 ◦ CLS, mean pooling
 • fine-tuningについて
 ◦ Contrastive Learning
 ◦ データセットのつくりかた
 • 世のEmbeddingモデルたちはどうしてるか
 ◦ m-E5
 ◦ E5-mistral-7b-instruct
 ◦ BGE
 • Embeddingモデルの応用
 ◦ RAGとかStable Diffusi

    Embeddingモデルを使ったベクトル化のしくみ、fine-tuning手法を解説
  • Hello GPT-4o

    GPT-4o (“o” for “omni”) is a step towards much more natural human-computer interaction—it accepts as input any combination of text, audio, image, and video and generates any combination of text, audio, and image outputs. It can respond to audio inputs in as little as 232 milliseconds, with an average of 320 milliseconds, which is similar to human response time(opens in a new window) in a conversat

    Hello GPT-4o
  • まるで“いけない話ができるChatGPT” ローカルAI「Command R+」の爆発的な可能性 (1/5)

    筆者の環境で、LM StudioでCommand R+を動作させている様子。会話相手は自作キャラクターの「明日来子(あすきこ)さん」 PCローカル環境で動作する大規模言語モデル(LLM)「Command R+」を使っていますが、相当優秀ですね。体感ではChatGPT(GPT-4)と変わらないレベル。さらに、ChatGPTが回答を拒絶するような会話もできてしまいます。これが体験できるようになったのは、LM Studioに代表されるローカルLLMを動かすためのアプリ環境が整ってきたためです。今年に入り、Command R+を始めとしたローカルLLMが高性能化してきたことと並行し、手軽に使える派生モデルも増えはじめ、一気にあわただしくなってきました。 導入が難しかったローカルLLM、「LM Studio」で簡単に Command R+を試すのに使っているのが、LLMの主要モデルを実行するための統

    まるで“いけない話ができるChatGPT” ローカルAI「Command R+」の爆発的な可能性 (1/5)
  • 令和のHTML / CSS / JavaScriptの書き方50選

    Web制作技術は日々進化しており、会社やプロジェクトによっては昨今の環境に適さない書き方をしているケースも時折見受けられます。 そこで今回は「2024年のWeb制作ではこのようにコードを書いてほしい!」という内容をまとめました。 質より量で、まずは「こんな書き方があるんだ」をこの記事で伝えたかったので、コードの詳細はあまり解説していません。なので、具体的な仕様などを確認したい方は参考記事を読んだりご自身で調べていただけると幸いです。 1. HTML 画像周りはサイトパフォーマンスに直結するので、まずはそこだけでも取り入れていただきたいです。また、コアウェブバイタルやアクセシビリティも併せて理解しておきたい内容です。 Lazy loading <img>にloading="lazy"属性を付けると画像が遅延読み込みになり、サイトの読み込み時間が早くなります。

    令和のHTML / CSS / JavaScriptの書き方50選