ブックマーク / tech.preferred.jp (6)

  • DNN推論用ライブラリ「Menoh」リリースについて - Preferred Networks Research & Development

    Python以外も使いたくないですか?  特にDeepLearning界隈で. Menoh開発者の岡田です.この記事ではMenohの紹介と開発に至った動機について説明します. Menohのレポジトリ: https://github.com/pfnet-research/menoh Menoh(メノウ)は学習済みのDNNモデルをONNX形式から読み込んで動作させる推論専用のライブラリです.実装はC++で書きましたが,C言語のインターフェースを持たせて,他の言語用からもその機能を呼び出しやすくしてあります.リリース時点でC++版ラッパーとC#版ラッパー,Haskell版ラッパーがあり,Ruby版ラッパーとNodeJS版ラッパー,Java(JVM)版ラッパーが開発中です.バックエンドにはIntelの開発しているMKL-DNNを採用し,GPUが無くてもIntel CPUが使える環境で高速にモデルの

    DNN推論用ライブラリ「Menoh」リリースについて - Preferred Networks Research & Development
    matsumoto_r
    matsumoto_r 2018/06/22
    良い。Cのインタフェースがあると何かと多言語or他ソフトウェアとの繋ぎが便利
  • Preferred Networks における研究活動 - Preferred Networks Research & Development

    こんにちは、新しく執行役員兼 Chief Research Strategist に就任した秋葉です。就任の挨拶を兼ねて、PFN における研究活動に関する考えを共有したいと思います。 PFN における研究とは何か? 何が研究であり何が研究でないかという境界を引くのは非常に難しく、またそれを積極的に行う意味もありません。研究とは「研ぎ澄まし究めること」を語義とし、一般に、物事について深く調査・考察を行い事実を解明したり発明を行ったりすることを指します。 PFN では挑戦的であり不確実性の高いプロジェクトが大部分を占めており、ほぼ全てのプロジェクトが少なからず研究的側面を伴います。深層学習関連のコア技術の研究開発は勿論、その応用に関してもデータやタスクに応じた適切な手法の選択や非自明な工夫がなければ上手くいかないことが殆どです。また、ロボティクス、コンピュータビジョン、自然言語処理等のような多

    Preferred Networks における研究活動 - Preferred Networks Research & Development
    matsumoto_r
    matsumoto_r 2018/06/08
    僕もこれまで何度か述べたように、なぜ論文を書くのか、できた技術そのものよりもその技術を作りあげられる技術力を持ち続けることが差別化になる、と言った話がこうやってどんどん当たり前になっていってほしい
  • 「コンピューターサイエンスのすべての分野に精通していること」という応募資格に込めた想い | Preferred Research

    ※PFNの募集要項は、ブログの内容をふまえ、適切に意図が伝わるよう一部更新しました PFN代表の西川です。 今回は、SNS上でもたびたび話題(炎上?)になっているPFNの応募資格について、改めてご紹介したいと思います。 PFNの採用募集ページに書かれたリサーチャーの条件には、「コンピュータサイエンスのすべての分野に精通していること」という一文があります。この条件は、PFIの時から、リサーチャーの応募資格として常に掲げてきました。 その背景にある想いは、コンピュータサイエンスの研究をする上では、一つの分野だけでなく、幅広い分野について深い知見を有することが極めて重要である、ということです。たとえば、データベースの研究をする上では、トランザクション処理の理論や関係代数について詳しく知っているだけではなく、データベースを動かすコンピュータアーキテクチャ、ストレージ、また、今では分散データベース

    「コンピューターサイエンスのすべての分野に精通していること」という応募資格に込めた想い | Preferred Research
    matsumoto_r
    matsumoto_r 2018/02/27
    “リサーチャーもエンジニアリング的な素養が必要ですし、エンジニアも研究について理解をしていく必要があります”
  • ニューラルネットの逆襲から5年後 | Preferred Research

    私が2012年にニューラルネットの逆襲(当時のコメント)というのをブログに書いてからちょうど5年が経ちました。当時はまだDeep Learningという言葉が広まっておらず、AIという言葉を使うのが憚られるような時代でした。私達が、Preferred Networks(PFN)を立ち上げIoT、AIにフォーカスするのはそれから1年半後のことです。 この5年を振り返る良いタイミングだと思うので考えてみたいと思います。 1. Deep Learning Tsunami 多くの分野がこの5年間でDeep Learningの大きな影響を受け、分野特化の手法がDeep Learningベースの手法に置き換わることになりました。NLP(自然言語処理)の重鎮であるChris Manning教授もNLPで起きた現象を「Deep Learning Tsunami」[link] とよびその衝撃の大きさを表して

    ニューラルネットの逆襲から5年後 | Preferred Research
  • 異常検知の世界へようこそ - Preferred Networks Research & Development

    比戸です。 先週Jubatusの最新0.4.0がリリースされましたが、外れ値検知機能の追加が目玉の一つとなっています(jubaanomaly)。昨年PFIへ入社して初めて手がけた仕事が公開されたということで感慨ひとしおですが、便乗してあまり語られることのない異常検知の世界について書きたいと思います。以下の資料は昨年のFIT2012で使ったものです。 異常検知とは簡単にいえば、「他に比べて変なデータを見つけ出す」タスクです。お正月にテレビで繰り返し流れた、おすぎとピーコのCM(*1)がわかりやすいイメージですね。機械学習の枠組みで言えば”教師無し学習”に属します。分類や回帰、クラスタリングなど応用も多く人気も研究熱も高いタスクに比べると、マイナーです。SVMとか、Random Forestとか、Boostingとか、最近だとDeep Neural Networkとか、有名な必殺技アルゴリズム

    異常検知の世界へようこそ - Preferred Networks Research & Development
    matsumoto_r
    matsumoto_r 2013/01/18
    異常検知とか外れ値・変化点検出懐かしい。大学の学部時代に研究( http://blog.matsumoto-r.jp/?s=%E5%A4%89%E5%8C%96%E7%82%B9%E6%A4%9C%E5%87%BA )していたなぁ。
  • ニューラルネットの逆襲 - Preferred Networks Research & Development

    岡野原です。Deep Learningが各分野のコンペティションで優勝し話題になっています。Deep Learningは7、8段と深いニューラルネットを使う学習手法です。すでに、画像認識、音声認識、最も最近では化合物の活性予測で優勝したり、既存データ・セットでの最高精度を達成しています。以下に幾つか例をあげます。 画像認識 LSVRC 2012 [html]  優勝チームスライド [pdf], まとめスライド[pdf] Googleによる巨大なNeuralNetを利用した画像認識(認識として有名)[paper][slide][日語解説] また、各分野のトップカンファレンスでDeep Learningのチュートリアルが行われ、サーベイ論文もいくつか出ました。おそらく来年以降こうした話が増えてくることが考えられます。 ICML 2012 [pdf] ACL 2012 [pdf] CVPR

    ニューラルネットの逆襲 - Preferred Networks Research & Development
    matsumoto_r
    matsumoto_r 2012/11/02
    そういえば自己組織化マップをネットワークの可視化に利用してた人いたな
  • 1