1日100万個以上流れるダイス型のポテトを1つ1つ、人の目で見分け、異物混入や不良品がないか確認していた――にわかに信じにくい話かもしれないが、これは実際に、大手食品メーカー、キユーピーの工場で行われている原料検査の作業だ。 「画像処理技術などを使った機械化を長年検討してきましたが、精度やコストの面で現実的ではありませんでした」 こう話すのは、キユーピーの生産本部で次世代技術担当次長を務める荻野武さんだ。ベビーフードの品質と“安心”を支えるために行われている業務ではあるが、スタッフの人海戦術では限界が来ており、増産のボトルネックになっていたという。そんな状況が今、「ディープラーニング(深層学習)」で大きく変わろうとしている。 膨大な原料検査にブレイクスルーを起こす「ディープラーニング」 キユーピーは原料検査の基準を厳しく設定している。特にダイスポテト(さいの目状にカットされたジャガイモ)の