statisticsに関するmiki_beneのブックマーク (4)

  • 「確率統計-機械学習その前に v2.0」を公開した - hidekatsu-izuno 日々の記録

    以前、社内の勉強会用の資料として作成した「確率統計-機械学習その前に」という資料を今回大幅に改定して公開しました。 改定の一番のポイントは、統計分析の総覧的なガイドとして使えるようにしたことです。正直な話、内容的に私自身も十分に理解出来ていない部分も多いのですが、いろいろ調べた結果、なんとなく統計分析の手法マップ的なものが頭の中に出来上がってきたので、それをアウトプットとしてまとめてみました。 確率統計-機械学習その前に v2.0 from Hidekatsu Izuno 確率統計に限った話ではありませんが、新しい分野を学ぶ初学者にとって、全体像がよくわからないため混乱することが少なくありません。この資料を読むことでなんとなくでも全体を把握できていれば、他の文献を読む際にも理解が容易になるのではと思っています。 例によって、確率統計については完全に素人なので、間違いもあるかもしれません。そ

    「確率統計-機械学習その前に v2.0」を公開した - hidekatsu-izuno 日々の記録
  • 統計学を勉強するときに知っておきたい10ポイント - Issei’s Analysis ~おとうさんの解析日記~

    googleさんやマイクロソフトさんは「次の10年で熱い職業は統計学」と言っているようです。またIBMは分析ができる人材を4,000人増やすと言っています(同記事)。しかし分析をするときの基礎的な学問は統計学ですが、いざ統計学を勉強しようとしてもどこから取りかかればいいか分からなかくて困るという話をよく聞きます。それに機械学習系のは最近増えてきましたが、統計学自体が基礎から学べるはまだあまり見かけないです。 そこで今回は、統計学を初めて勉強するときに知っておいた方が良い10ポイントを紹介したいと思います。 1. 同じ手法なのに違う呼び名が付いている 別の人が違う分野で提案した手法が、実は全く同じだったということがあります。良く聞くのは、数量化理論や分散分析についてです。 数量化理論 数量化I類 = ダミー変数による線形回帰 数量化II類 = ダミー変数による判別分析 数量化III類 =

    統計学を勉強するときに知っておきたい10ポイント - Issei’s Analysis ~おとうさんの解析日記~
  • ROC曲線とは何か、アニメーションで理解する。 - Qiita

    統計学、パターン認識等で、ROC(Receiver Operating Characteristic;受信者動作特性)曲線という概念が出てきます。また、データ分析・予測のコンペティションサイトKaggleでも、提出されたアルゴリズムの識別性能評価にこのROC曲線に基づくAUC(Area Under the Curve)というものを使っています。(例えばココ) このROC曲線、ちょっとわかりにくいので、まとめてみました。また、アニメーションでグラフを動かしてイメージを付けるということもやってみます。 1. ROC曲線に至る前説 まず、例として健康に関するとある検査数値データがあったとします。 この検査数値は健康な人は平均25, 標準偏差2の正規分布に従い分布しています。(下記図の緑の曲線) 病気の人は平均30、標準偏差4の正規分布に従い分布しています。(下記の図の青の曲線) グラフにすると下

    ROC曲線とは何か、アニメーションで理解する。 - Qiita
  • 統計的消去で擬似相関を見抜こう! - ほくそ笑む

    今日は初心者向け記事です。 はじめに ある範囲の年齢の小学生32人を無作為に選び、算数のテストを受けてもらい、さらにその身長を測定しました。 身長に対する算数の点数のグラフは次のようになりました。 なんと、身長の高い子供の方が、算数の点数が高いという結果になりました! 身長が算数の能力に関係しているなんて、すごい発見です! しかしながら、結論から言うと、この結果は間違っています。 なぜなら、抽出したのは「ある範囲の年齢の小学生」であり、年齢の高い子も低い子も含まれているからです。 年齢が高いほど算数能力は高くなり、年齢が高いほど身長も高くなることは容易に推測できます。 この関係を図で表すと次のようになります。 つまり、年齢と算数能力に相関があり、年齢と身長にも相関があるため、身長と算数能力にも見かけ上の相関が見えているのです。 このような相関を擬似相関と言います。 統計解析では、このような

    統計的消去で擬似相関を見抜こう! - ほくそ笑む
  • 1