2017年12月27日のブックマーク (2件)

  • ROC曲線とは何か、アニメーションで理解する。 - Qiita

    なので、水色の面積(真陽性:病気の人を「病気」と判断)をなるべく大きくして、緑の面積(偽陽性:健康な人を「病気」と判断してしまう)を小さくすると、識別の性能が高いと言えます。 以上のデータからROC曲線を描くと下記のグラフになります。 これがどういうものかを、次項より説明していきます。 また、今回識別境界をx=27においていますが、これが良い境界であることは最初のグラフの2つの分布を引き算したグラフを描いてみるとわかります。正しい判定(水色面積:病気の人を病気と判断)を増やし、誤った判断(健康な人を病気と判断)を少なくするので、水色の面積は+、緑色の面積はーとなります。水色から緑を引いた曲線を描き、左から順に識別境界を右にずらして考えると、x=27のところより右はマイナスにしかならないので、面積が最大のところは下記のとおりx=27のところということがわかります。 2. ROC曲線の書き方

    ROC曲線とは何か、アニメーションで理解する。 - Qiita
  • 機械学習で使う指標総まとめ(教師あり学習編) - プロクラシスト

    こんにちは、ほけきよです! 機械学習の基は教師あり学習です。 でも、実際の現場ではいろいろ指標が出てきて「?」 ってなるので、一回気でまとめてみることにしてみました! 教師あり学習の分類 二値分類 用語一覧表 図解 事例 事例1:果物の分類 事例2:ガンかどうかの検査 ROC曲線の意味合い 指標まとめ 多クラス分類 precision, recall, F-measure accuracy logarithm loss 出力が数値(回帰) 用語一覧 二乗誤差(MSE, RMSE)と絶対誤差(MAE)の使い分け AICとBIC, wAICの使い分け 時系列問題 参考になりそうなサイト 教師あり学習の分類 今回は正解はカテゴリか意味を持つ数字かで場合分けをしてみた。 全体の指標のサマリーはこんな感じ(だと思っている。) ※他にも大事な指標があるよ&これは間違っているのでは?? というコメン

    機械学習で使う指標総まとめ(教師あり学習編) - プロクラシスト