2017年12月27日のブックマーク (2件)

  • ROC曲線とは何か、アニメーションで理解する。 - Qiita

    統計学、パターン認識等で、ROC(Receiver Operating Characteristic;受信者動作特性)曲線という概念が出てきます。また、データ分析・予測のコンペティションサイトKaggleでも、提出されたアルゴリズムの識別性能評価にこのROC曲線に基づくAUC(Area Under the Curve)というものを使っています。(例えばココ) このROC曲線、ちょっとわかりにくいので、まとめてみました。また、アニメーションでグラフを動かしてイメージを付けるということもやってみます。 1. ROC曲線に至る前説 まず、例として健康に関するとある検査数値データがあったとします。 この検査数値は健康な人は平均25, 標準偏差2の正規分布に従い分布しています。(下記図の緑の曲線) 病気の人は平均30、標準偏差4の正規分布に従い分布しています。(下記の図の青の曲線) グラフにすると下

    ROC曲線とは何か、アニメーションで理解する。 - Qiita
  • 機械学習で使う指標総まとめ(教師あり学習編) - プロクラシスト

    こんにちは、ほけきよです! 機械学習の基は教師あり学習です。 でも、実際の現場ではいろいろ指標が出てきて「?」 ってなるので、一回気でまとめてみることにしてみました! 教師あり学習の分類 二値分類 用語一覧表 図解 事例 事例1:果物の分類 事例2:ガンかどうかの検査 ROC曲線の意味合い 指標まとめ 多クラス分類 precision, recall, F-measure accuracy logarithm loss 出力が数値(回帰) 用語一覧 二乗誤差(MSE, RMSE)と絶対誤差(MAE)の使い分け AICとBIC, wAICの使い分け 時系列問題 参考になりそうなサイト 教師あり学習の分類 今回は正解はカテゴリか意味を持つ数字かで場合分けをしてみた。 全体の指標のサマリーはこんな感じ(だと思っている。) ※他にも大事な指標があるよ&これは間違っているのでは?? というコメン

    機械学習で使う指標総まとめ(教師あり学習編) - プロクラシスト