タグ

Algorithmに関するmkataigiのブックマーク (39)

  • 大規模データで単語の数を数える - ny23の日記

    大規模データから one-pass で item(n-gram など)の頻度を数える手法に関するメモ.ここ数年,毎年のように超大規模な n-gram の統計情報を空間/時間効率良く利用するための手法が提案されている.最近だと, Storing the Web in Memory: Space Efficient Language Models with Constant Time Retrieval (EMNLP 2010) とか.この論文では,最小完全ハッシュ関数や power-law を考慮した頻度表現の圧縮など,細かい技術を丁寧に組み上げており,これぐらい工夫が細かくなってくるとlog-frequency Bloom filter (ACL 2007) ぐらいからから始まった n-gram 頻度情報の圧縮の研究もそろそろ収束したかという印象(ちょうど論文を読む直前に,この論文の7節の

    大規模データで単語の数を数える - ny23の日記
  • https://shiumachi.hatenablog.com/entry/20100830/1283160326

  • リンク解析とか: 重要度尺度と von Neumann カーネル - smly’s notepad

    NAIST の入学手続を終えた. 残りの期間はサーベイするぞーということで shimbo 先生の講義資料「リンク解析とその周辺の話題」を読んでいます. 一日目, 二日目の資料は PageRank, HITS, SALSA などの重要度尺度の紹介と, von Neumann Kernels と HITS の関係についてのお話が中心. これらを実装してみた. 後半に進むほど力尽きて記述が適当になってます:)PageRankポイントはランダム遷移行列による random walk では定常分布に収束しない (エルゴード性 (ergodic) を満たさない) という点. どうして満たさないかというと. sink (出次数のない節点) が存在するとき, 明らかに既約 (irreducible) でないのでエルゴード性を満たさない. 複数の強連結成分を持つケース => 周期性を持つと考えてよい? 周期

  • EM アルゴリズム実装(勉強用) - 木曜不足

    最近忙しくて*1、PRML の予習が滞り中。 しかし、次の PRML 読書会に徒手空拳で行ったら、気持ちよく昇天してしまいそうなので、なんとか頑張って読んでみる。 EM アルゴリズムは何となくわかるが、変分ベイズがわからん…… というわけで、Old Faithful の混合正規分布での推論を K-means と EM と変分ベイズについて、Rで実装してみる。 K-means Old Faithful + K-means については、すでに 前回の記事でお試し済み。 その記事では、イテレーションを1行で書いてネタっぽくしてしまってたので、わかりやすく整理したのが以下のコード。 距離を取るところは少し変えて短くしてある。 # Old Faithful dataset を取得して正規化 data("faithful"); xx <- scale(faithful, apply(faithful,

    EM アルゴリズム実装(勉強用) - 木曜不足
  • [IR] Google WSDM'09講演で述べられている符号化方式を実装してみた - tsubosakaの日記

    MG勉強会の後にid:sleepy_yoshiさんに教えてもらったWSDM 2009における講演"Challenges in Building Large-Scale Information Retrieval Systems"で述べられている符号化方式のGroup Varint Encodingを実装してみた。 資料 講演スライド スライドの日語による解説記事 整数の符号化方式 転置インデックスなどで文章番号のリストを前の値との差分で表すなどの方法を用いると出現する、ほとんどの値は小さな値となるためこれを4バイト使って表現するのは記憶容量の無駄である。 このためVarint Encoding、ガンマ符号、デルタ符号、Rice Coding、Simple 9、pForDeltaなど様々な符号化方式が提案されている。このうちVarint Encodingは実装が手軽なことからよく用いられて

    [IR] Google WSDM'09講演で述べられている符号化方式を実装してみた - tsubosakaの日記
  • Yahoo! BOSS + クラスタリング + GAEの検索システム·Clustsrch MOONGIFT

    ClustsrchはPython製のフリーウェア(ソースコードは公開されている)。Yahoo! BOSSとはBuild your Own Search Serviceの略で、カスタマイズ性の高い検索システムを構築できるWeb APIだ。自サイトのサイト内検索として使ったり、そこから得られるデータを使って様々なマッシュアップを構築したりするのに使われる。 Yahoo! BOSSを使った検索システム そんなYahoo! BOSSを検索システムとして使ったのがClustsrchだ。ただそのまま使うのではなく、階層型クラスタリングと呼ばれる手法を盛り込んでいる。結果から得られる単語を取り出して、グループ化していく手法だ。 Clustsrchで検索を行うと検索結果とは別にグルーピングされた情報が表示される。それをクリックすると検索結果が絞り込まれる仕組みだ。Googleのサジェストに似ているが、さら

    Yahoo! BOSS + クラスタリング + GAEの検索システム·Clustsrch MOONGIFT
  • 連想配列の進化 - DO++

    キーに対して値を結びつける連想配列は多くのアプリケーションの肝であり、コンパクトかつ高速な処理が可能な連想配列を追い求め日夜研究が進められています。 特に非常に巨大な連想配列を高速に処理するというのが重要な課題となっています。例えば、音声認識・文字認識・機械翻訳などで使われている言語モデルでは、非常に大量のN個の単語列の情報(特に頻度)を格納することが重要になります。 この場合、キーが単語列であり、値が単語列のコーパス中での頻度に対応します。 例えばGoogle N-gram Corpusからは数十億種類ものN-gramのキーとその頻度などが取得できます。これらを主記憶上に格納し、それに関する情報(頻度や特徴情報)を操作することが必要になります。 そのほかにも大規模なデータを扱う問題の多くが巨大な連想配列を必要とします。 ここではこのような連想配列の中でも、キーの情報を格納することすら難し

    連想配列の進化 - DO++
  • BLOG::broomie.net: 機械学習の勉強を始めるには

    thriftとかhadoopなど,何やらいろいろと手を出してしまい,ここのところブログの更新が滞ってしまっていますが,今日は前から書きたかったトピックについて自分へのメモの意味も含めて記しておきたいと思います. はじめに 最近,といっても結構前からなのですが,海外のブログなどで「機械学習の勉強を始めるガイドライン」についてのエントリーがいくつか見られ,かつ,議論も少し盛り上がっています.僕は機械学習が好きなだけで,専門というにはほど遠いのですが,僕も一利用者としてはこのトピックに関してはとても興味があります. 機械学習というと,色々な数学的な知識が必要であったり,統計学や人工知能の知識も必要になったりしまったりと,専門的に学ぶ機会が無かった人にとっては興味が湧いてもなかなか始めるには尻込みしてしまうことかと思います.今日紹介するエントリーは,そんな方々にヒントになるような内容になっていると

  • PFI で2ヶ月のインターンシップに参加してきた - 肉とビールとパンケーキ by @sotarok

    8月の頭から先週10月2日まで,Preferred Infrastructure (PFI) でインターンシップに参加してきました. 思えばあっという間でしたが,非常に濃い体験をし,多くのものを得た2ヶ月でした. インターンでなにをやったのか,何を得たのか,自分なりにまとめたいと思います.長文ですみません.結局うまくまとまらなかった... エントリー 日記風(w)に,エントリーから振り返りたいと思います.PFIでインターンの募集が始まった,と聞いたのは, @kzk_mover さんか @ichii386 さんの Twitter でのつぶやきからでした. で,まあPFIは太田さんを知ってたりして,素敵な会社だなーと思ってたこともあり,募集要項は「レベルが高い」とTwitterやブクマでも話題だったので受かるかどうか自信はなかったんですが,学生最後の年だし,今年やらなかったらもうインターンもで

    PFI で2ヶ月のインターンシップに参加してきた - 肉とビールとパンケーキ by @sotarok
  • SBM研究会発表資料 - SBMの推薦アルゴリズム - DO++

    先週末東工大で開催された第3回SBM研究会の発表資料です。 * SBMの推薦アルゴリズム [pdf] [pptx] - はてブの関連エントリで利用されているBayesian setsの解説とその改良(とチューニングちょっと) - Locality Sensitive Hash (LSH)の解説と実験結果.結構うまくいった (最初のエコは大切というのは前の発表からの流れです) ---- 研究会は熱心な人がたくさんいて、twitterでリアルタイムな反応がみれるなど新鮮でした。

    SBM研究会発表資料 - SBMの推薦アルゴリズム - DO++
  • Redirecting...

    If you are not redirected, click here.

  • BWT と PPM - naoyaのはてなダイアリー

    Burrows Wheeler Transform (BWT, Block-sorting) と Prediction by partial matching (PPM) は質的に同じ事をやっている、というお話です。 先日 Managing Gigabytes を読んでいたところ、P.69 で "block sorting is very closely related to the PPM* method, which is a variant of PPM that allows arbitrary-length contexts." という記述があり、どうにも気になったので調べてみました。 サマリとしては、BWT と PPM の一種である PPM* はいずれも文脈から次の1文字を一意に決定するという概念で見ると質的に同じことをやっていると言える、というところです。 BWT のあら

    BWT と PPM - naoyaのはてなダイアリー
  • Perl で Range Coder (再挑戦) - naoyaのはてなダイアリー

    以前にも Perl で Range Coder を実装した (http://d.hatena.ne.jp/naoya/20080927/1222512024) のですが、当時は理解も曖昧なまま速度にも気を遣わずに実装していました。 再度改めて、Range Coder を実装してみました。 http://github.com/naoya/perl-RangeCoder/tree/master README に記載した通り、静的 Range Coder*1、Binary Indexed Tree を用いた適応型 Range Coder、それからついでに 1-order の有限文脈モデルをもちいたものを作ってみました。いずれも Algorithms with Python の情報 (1, 2, 3)を参考に実装しています。 Canterbury Corpus の alice29.txt は 0-

    Perl で Range Coder (再挑戦) - naoyaのはてなダイアリー
  • 転置インデックスを実装しよう - mixi engineer blog

    相対性理論のボーカルが頭から離れないmikioです。熱いわっふるの声に応えて今回はTokyo Cabinetのテーブルデータベースにおける検索機能の実装について語ってみたいと思います。とても長いのですが、最後まで読んだあかつきには、自分でも全文検索エンジンを作れると思っていただければ嬉しいです。 デモ モチベーションをあげていただくために、100行のソースコードで検索UIのデモを作ってみました。Java 6の日語文書を対象としているので、「stringbuffer」とか「コンパイル」とか「倍精度浮動小数」とかそれっぽい用語で検索してみてください。 インデックスがちゃんとできていれば、たった100行で某検索エンジン風味の検索機能をあなたのデータを対象にして動かすことができます。ソースコードはこちら(テンプレートはこちら)です。 でも、今回はUIの話ではないのです。ものすごく地味に、全文検索

    転置インデックスを実装しよう - mixi engineer blog
  • Web上の膨大な画像に基づく自動画像補完技術の威力 - A Successful Failure

    画像内に映り込んだ所望のオブジェクトを排除し、違和感の無い画像を生成するシーン補完技術に関しては近年複数の研究成果が発表されている。しかし中でも2007年のSIGGRAPHにて米カーネギメロン大のJames HaysとAlexei A. Efrosが発表した手法*1はブレークスルーとなりうる画期的なものだ。 論より証拠、早速適用例を見てみよう。エントリで利用する画像はPresentationからの引用である。元画像の中から邪魔なオブジェクト等の隠蔽すべき領域を指定すると、その領域が補完された画像が自動的に生成される。 アルゴリズム 効果は抜群だがアイデア自体は単純なものだ。Web上には莫大な数量の画像がアップされており、今や対象となる画像の類似画像を一瞬にして大量に検索することができる。そこで、検索された類似画像で隠蔽領域を完全に置き換えてしまうことで違和感の無い補完画像を生成するのだ。

    Web上の膨大な画像に基づく自動画像補完技術の威力 - A Successful Failure
  • 適切なクラスタ数を推定するX-means法 - kaisehのブログ

    K-means法によるクラスタリングでは、あらかじめクラスタ数Kを固定する必要があります。HatenarMapsでもK-means法を使っているのですが、クラスタ数は(特に根拠もなく)200個に決め打ちになっていました。 これに対して、X-means法というK-means法の拡張が提案されていることを知りました。X-means法を使うと、データに応じて最適なクラスタ数を推定できます。 K-means and X-means implementations http://www-2.cs.cmu.edu/~dpelleg/download/xmeans.pdf X-means法の考え方は、K=2で再帰的にK-means法を実行していくというもので、クラスタの分割前と分割後でBIC(ベイズ情報量規準)を比較し、値が改善しなくなるまで分割を続けます。 調べたところ、Javaのデータマイニングツー

    適切なクラスタ数を推定するX-means法 - kaisehのブログ
  • 軽量データクラスタリングツールbayon - mixi engineer blog

    逆転検事を先日クリアして、久しぶりに逆転裁判1〜3をやり直そうか迷い中のfujisawaです。シンプルなデータクラスタリングツールを作成しましたので、そのご紹介をさせていただきます。 クラスタリングとは クラスタリングとは、対象のデータ集合中で似ているもの同士をまとめて、いくつかのグループにデータ集合を分割することです。データマイニングや統計分析などでよく利用され、データ集合の傾向を調べたいときなどに役に立ちます。 例えば下図の例ですと、当初はデータがゴチャゴチャと混ざっていてよく分からなかったのですが、クラスタリングすることで、実際は3つのグループのデータのみから構成されていることが分かります。 様々なクラスタリング手法がこれまでに提案されていますが、有名なところではK-means法などが挙げられます。ここでは詳細については触れませんが、クラスタリングについてより詳しく知りたい方は以下の

    軽量データクラスタリングツールbayon - mixi engineer blog
  • データ圧縮の基礎

  • ohmm(オンラインEMによるHMM学習)をリリースしました - DO++

    Ohmm-0.01をリリースしました [Ohmm 日語] [Ohmm English] これは、以前のブログで書いた、オンラインEM法をそのまま素直に隠れマルコフモデル(HMM)に対し適用したライブラリです。 使う場合は、単語(アクセス履歴とかなんでもよい)に分けられているテキストを入力として与えれば、HMMによる学習を行い、結果を出力します。他で利用できるように、パラメータを出力したり、単語のクラスタリング結果を出力します。 HMM自体は、言語情報やアクセス履歴、生物情報(DNA)といったシーケンス情報において、前後の情報を用いて各要素をクラスタリングしたい場合に用います。 ライブラリの特徴はオンラインEMの特徴通り、従来のEMよりも速く収束します。一応標準的な最適化手法(スケーリング、スパースな期待値情報の管理)もいれているので、そこそこ高速に動きます 速度的には100万語、隠れ状

    ohmm(オンラインEMによるHMM学習)をリリースしました - DO++
  • Canonical Huffman Codes での符号長の効率的な計算 - naoyaのはてなダイアリー

    週末に参加した Managing Gigabytes の読書会で第2章のハフマン符号を担当しました。この中で Canonical Huffman Codes の解説がありますが、そこにハフマン符号の符号長を効率的に求める手法の説明が含まれています。 輪講では時間切れのためこのアルゴリズムの解説が駆け足になってしまいましたので、改めて解説資料を作ってみました。2009 年の今に Managing Gigabytes を読んでいるという方はあまり多くないかもしれませんが、参考になれば幸いです。 https://www.dropbox.com/s/539fhyc7rf6b9ik/090518computing_huffman_code_length.ppt?dl=0 (PPT, 258K) 先日 Canonical Huffman Codes の習作を Python で実装しましたが、このコード

    Canonical Huffman Codes での符号長の効率的な計算 - naoyaのはてなダイアリー