タグ

ブックマーク / postd.cc (4)

  • PythonとKerasを使ってAlphaZero AIを自作する | POSTD

    自己対戦と深層学習でマシンにコネクトフォー(Connect4:四目並べ)の戦略を学習させましょう。 この記事では次の3つの話をします。 AlphaZeroが人工知能AI)への大きなステップである2つの理由 AlphaZeroの方法論のレプリカを 作って コネクト4のゲームをプレイさせる方法 そのレプリカを改良して他のゲームをプラグインする方法 AlphaGoAlphaGo Zero→AlphaZero 2016年3月、DeepmindのAlphaGo(アルファ碁)が、囲碁の18回の世界王者、李世乭(イー・セドル)との五番勝負で、2億人の見守る中、4-1で勝利しました。機械が超人的な囲碁の技を学習したのです。不可能だとか、少なくとも10年間は達成できないと思われていた偉業です。 AlphaGo 対 李世乭の第3局 このことだけでも驚くべき功績ですが、DeepMindは、2017年10月、

    PythonとKerasを使ってAlphaZero AIを自作する | POSTD
  • SQLトランザクション分離 実践ガイド | POSTD

    (注:2017/10/16、いただいたフィードバックを元に翻訳を修正いたしました。) (注:2017/10/11、いただいたフィードバックを元に翻訳を修正いたしました。) データベースのドキュメントで分離レベルを目にして、軽く不安を感じつつ、あまり考えないようにしたことはないでしょうか。トランザクションの日常の使用例できちんと分離について言及しているものはほとんどありません。多くはデータベースの初期設定の分離レベルを利用しており、後は運頼みです。しかし、来、理解しておくべき基的なトピックであり、いくらか時間を投入してこのガイドの内容を学習すれば、もっと快適に作業できるようになるでしょう。 私はこの記事の情報を学術論文、PostgreSQLドキュメンテーションから集めました。分離レベルの 何たる かだけでなく、適用の正確さを保持しつつ最大速度で使うにはいつ使うべきか、という疑問に答えるべ

    SQLトランザクション分離 実践ガイド | POSTD
  • 機械学習に挑んだ一年間 – 機械学習について一から学び、仕事に活用するまでの道のり | POSTD

    この記事は、去年私が書いた「Machine Learning in a Week(機械学習に挑んだ一週間)」という記事の続編です。その記事では、私が5日間集中的に機械学習を学び、のめり込んでいった経緯について説明しています。 機械学習に挑んだ一週間 一般の人にとって機械学習の分野に足を踏み入れるのは、無謀なことに思えるでしょう。medium.com 私は順調なスタートを切った後も、時間を見つけて勉強を続け、およそ一年後には、仕事機械学習を活用した初プロジェクトを立ち上げることができました。そのプロジェクトでは、さまざまなタイプの機械学習や自然言語処理(NLP)の技術を駆使して、 Xeneta の 潜在顧客の特定 を行っています。 趣味でやっていたことが仕事になって、とても嬉しかったです。 同時に、仕事として機械学習を利用するのは博士号を持つ限られた人だけだ、という思い込みも払拭されました

    機械学習に挑んだ一年間 – 機械学習について一から学び、仕事に活用するまでの道のり | POSTD
  • 勾配降下法の最適化アルゴリズムを概観する | POSTD

    (編注:2020/10/01、2016/07/29、いただいたフィードバックをもとに記事を修正いたしました。) 目次: さまざまな勾配降下法 バッチ勾配降下法 確率的勾配降下法 ミニバッチ勾配降下法 課題 勾配降下法を最適化するアルゴリズム Momentum(慣性) Nesterovの加速勾配降下法 Adagrad Adadelta RMSprop Adam アルゴリズムの可視化 どのオプティマイザを選ぶべき? SGDの並列化と分散化 Hogwild! Downpour SGD SGDのための遅延耐性アルゴリズム TensorFlow Elastic Averaging SGD 最適化されたSGDに対する更なる戦略 シャッフル学習とカリキュラム学習 バッチ正規化 早期終了 勾配ノイズ 結論 参考文献 勾配降下法は、最適化のための最も知られたアルゴリズムの1つです。これまではニューラルネット

    勾配降下法の最適化アルゴリズムを概観する | POSTD
  • 1