タグ

Mathematicsに関するmn36555023のブックマーク (4)

  • ガウス整数 - Wikipedia

    ガウス整数とは、複素数平面では格子点に当たる。 ガウス整数(ガウスせいすう、英語: Gaussian integer)とは、実部と虚部が共に整数である複素数のことである。すなわち、a + bi(a, b は整数)の形の数のことである。ここで i は虚数単位を表す。ガウス整数という名称は、カール・フリードリヒ・ガウスが導入したことに因む。ガウス自身はガウス整数のことを複素整数(ドイツ語: Komplexe Ganze Zahl)と呼んだ[1]が、今日ではこの呼称は一般的ではない。 通常の整数は、b = 0 の場合なので、ガウス整数の一種である。区別のために、通常の整数は有理整数と呼ばれることもある。 数学的には一つ一つのガウス整数を考えるよりも、集合として全体の構造を考える方が自然である。ガウス整数全体の集合を Z[i] と表し、これをガウス整数環と呼ぶ。すなわち、 である(Z は有理整数環

    ガウス整数 - Wikipedia
  • 2の冪 - Wikipedia

    2の冪 2n の直方体による図示。 左上1 (=20) から右下 1024 (=210) まで。 2の冪(にのべき、(英: power of two)は、2 を底とし整数の指数を持つ冪である。2の冪は、指数を n として一般に、2n の形で表される(例えば n = 0, 1, 2, 3, … に対してそれぞれ 20 = 1, 21 = 2, 22 = 4, 23 = 8, …)。 概説[編集] 1に2倍のみを繰り返すことによって得られる数であり、ごく基的な数量操作で得られる数であることから、様々な場面で用いられる。 指数に負の整数を許すならば、2の冪乗(この場合、それらは自然数ではなく有理数である)の中には「半分」の概念も含まれてくる。実際、1 (20), 1/2 (2−1), 1/4 (2−2), 1/8 (2−3), 1/16 (2−4) … というようなものも、2の冪乗として表すこ

    2の冪 - Wikipedia
  • グラハム数 - Wikipedia

    ということである。これがグラハム問題である。グラハムの定理より、解の存在は確かだが、具体的な値は現在にいたるまで得られていない。 しかし、この関係がグラハム数以上の n について成り立つことがグラハム自身によって証明された。つまり、解はグラハム数以下である。 ただし、グラハムらは実際にはこの数を論文では発表しておらず、翌1971年にグラハム数より小さなグラハム問題の解の上限として、小グラハム数という数を発表した[2]。その後、マーティン・ガードナーが1977年にサイエンティフィック・アメリカンでグラハム数を紹介した[3]ことによってこの数は広く知られるようになった。 解の上限はのち2014年にミハイル・ラブロフらによってさらに小さい数が示された[4]。 一方、この問題の解の下限(つまりこの数より小さい数では成り立たないことを示した数)としては、グラハムとロスチャイルドは1971年の小グラハ

  • 数の比較 - Wikipedia

    数の比較では、数を比較できるよう、昇順に表にする。ここでは原則として正の実数のみを扱う。 ここで扱う「数」には 数学定数 物理定数のうち無次元数 命数 が含まれる。 1未満[編集] 数の比較 因数 SI接頭語 値 説明

  • 1