正定値関数と再生核ヒルベルト空間 概要 正定値関数は,ユークリッド空間における線形的な統計手法を非線形へと拡張するカーネル法において,非常に重要な役割を果たす. カーネル法は,正定値関数の形に応じて定まる再生核ヒルベルト空間上の線形データ解析とみなすことができるが, 解析者は特に再生核ヒルベルト空間自体を把握せずとも,データ解析が可能である. 一方,正定値関数より広い関数のクラスである条件付き負定値関数も,統計解析や数値解析において非常に重要な役割を果たす. ここでは,正定値関数や条件付き負定値関数の定義を確認した後に,気象データの解析に用いたスプライン補間がこれらの理論に裏打ちされたものであることを説明する. 正定値関数 ある\(n\)次正方実行列\(A\)が正定値行列であるとは,\(A\)が対称行列であり,かつ任意の\(n\)次実ベクトル\(\boldsymbol{p}\in \mat