タグ

ブックマーク / statmodeling.hatenablog.com (7)

  • ガウス過程シリーズ 1 概要 - StatModeling Memorandum

    Stanのマニュアルの「Gaussian Processes」の章を実際に実行しましたので記録を残します。結論から言いますと、Stanでやる場合は回帰はよいですがクラス分類に使おうとすると計算が遅いし収束も悪いです。 まずGaussian Process(以下GPと呼ぶ)とは何ぞやということですがgpml(ぐぷむる?)として有名な次の書籍の1章が分かりやすいです。→Gaussian Processes for Machine Learning これを咀嚼して勝手に補完してまとめたものが以下になります。 GPは教師あり学習の一手法です。教師あり学習では有限のトレーニングデータから関数を作ることになります。関数はありとあらゆる入力の値に対して予測値を返すものです。この関数を決めるにあたり、2つのアプローチがあります。1つめは関数をあるクラス(例えば線形だとか)に限定するものです。しかしこれは採

    ガウス過程シリーズ 1 概要 - StatModeling Memorandum
    mnru
    mnru 2021/03/22
  • 変分法をごまかさずに変分ベイズの説明をする - StatModeling Memorandum

    StanでADVIが使えるようになったので、変分ベイズの基礎は抑えておきたいなぁと思って最近学んでいました。自分向けのメモとして残します。 対数周辺尤度・変分下限・KL情報量 目的は事後分布の最もよい近似となるを求めることです。にはあとで因子分解可能という条件を入れます。 イエンセンの不等式を使って、対数周辺尤度を下から評価すると、 を変分下限と呼びます。任意の関数の関数です。対数周辺尤度はevidenceとも呼ばれるため、変分下限はevidence lower bound、略してELBOとも呼ばれます。対数周辺尤度と変分下限の差は、 となります。これはと事後分布のKL情報量(Kullback-Leiblerdivergence)です。対数周辺尤度がにはよらない、データのみから決まる定数であることを考えると、事後分布の最もよい近似となるを求めることは、変分下限を最大化することに等価になりま

    変分法をごまかさずに変分ベイズの説明をする - StatModeling Memorandum
    mnru
    mnru 2019/09/19
  • 『わけがわかる機械学習』中谷秀洋(著)の書評 - StatModeling Memorandum

    僕が中谷さんと初めて会ったのはみどりぼんの読書会で、初めて話したのは岩波DSの打ち合わせだったと思います。今でもそんなに親しくはないと思います。しかし、中谷さんのブログは10年ぐらい前から読んでいました。自然言語処理を中心とする機械学習に関連する理論(の解釈)・論文レビュー・数値実験の記事が多く、他のブログでは見られない独特かつ理解の深い内容で、毎日勉強させてもらっていました。今でも何度も読むべきブログです。その中谷さんが機械学習についてまるごと一冊書いたものが書になります。もともと買うつもりでしたが、献いただいたので簡単にご紹介いたします。 わけがわかる機械学習 ── 現実の問題を解くために、しくみを理解する 作者: 中谷秀洋出版社/メーカー: 技術評論社発売日: 2019/08/28メディア: 単行(ソフトカバー)この商品を含むブログを見る 目次は以下になります。 0章: はじめ

    『わけがわかる機械学習』中谷秀洋(著)の書評 - StatModeling Memorandum
    mnru
    mnru 2019/09/18
  • GPy(Pythonのガウス過程用ライブラリ)の使い方 - StatModeling Memorandum

    概要 GPyを用いて、サンプルパスの生成、ガウス過程回帰、クラス分類、ポアソン回帰、Bayesian GPLVMを実行しました。自分用のメモです。 参考資料 [1] 公式ページ [2] 公式のチュートリアル [3] Gaussian Process Summer Schoolsの資料 理論的背景は上記の[3]を参考にしてください。日語でもガウス過程の解説がMLPシリーズから豪華著者陣で出るようです。超期待しています。 以下のサンプルプログラムは基的に[2]を元にしています。しかし、古くてそのままでは動かないプログラムや分かりにくいプログラムを少し加工修正しています。なお、環境は以下の通りです。 Windows 7 64bit Python 3.5.2 :: Anaconda 4.2.0 (64-bit) GPy 1.5.5 サンプルパスの生成 RBFカーネルで適当に定めたパラメータの値

    GPy(Pythonのガウス過程用ライブラリ)の使い方 - StatModeling Memorandum
    mnru
    mnru 2019/09/18
  • 「ベイズ統計の理論と方法」渡辺澄夫のメモ - StatModeling Memorandum

    ベイズ推測を使う人はもちろんのこと、嫌う人にもぜひ一読をすすめたい書籍です。ただし、メインの定理の証明の部分は、代数幾何学の特異点解消定理を使いますし、その他にも複素関数論・経験過程といった知識を要求されます。これらの事前知識に詳しくないと、3,4章の定理ひいてはWAICがなにやら抽象的で納得ができないといった事態になると思います。いつかp.93 例4のような特異点解消定理を使った例をいくつかこなして、さらに数値実験をして感覚をつかめたらと思います。渡辺先生は「もちろん『代数幾何学を知らなければWAICを使うことはできない』ということはありません。 WAICは簡単に計算できますので誰でも使うことができます。」とおおらかにおっしゃってくれていますので(web)現段階でも使います。 また書籍には、ベイズ推測のユーザーとして参考になる「注意」「例」、各章の最後にある「質問と回答」のコーナー、さら

  • 『Pythonで体験するベイズ推論 ―PyMCによるMCMC入門―』の書評 - StatModeling Memorandum

    特長 Pythonユーザが待ちに待ったPythonによるMCMCではないでしょうか。原著タイトルが『Bayesian Methods for Hackers』だけあって、プログラマ・エンジニア向きだと思います。数式はびっくりするほど出てこない代わりに、Pythonコードは非常にたくさんでてきます。そしてPyMCの使い方が基礎から説明してあって丁寧です。自分でコーディングする際は原著のGitHubリポジトリを活用しましょう(なんとStarが10000個を超えてる!)。 Pythonで体験するベイズ推論 PyMCによるMCMC入門 作者: キャメロン・デビッドソン=ピロン,玉木徹出版社/メーカー: 森北出版発売日: 2017/04/06メディア: 単行(ソフトカバー)この商品を含むブログを見る 購入を迷っている人の一番の心配は、書のPyMCのバージョンが1つ前のPyMC2であることだと思

    『Pythonで体験するベイズ推論 ―PyMCによるMCMC入門―』の書評 - StatModeling Memorandum
    mnru
    mnru 2017/09/01
    “Bayesian Methods for Hackers”
  • 情報量規準LOOCVとWAICの比較 - StatModeling Memorandum

    この記事はStan Advent Calendar 2016およびR Advent Calendar 2016の12月7日の記事です。StanコードとRコードは記事の最後にあります。 背景は以下です。 [1] Aki Vehtari, Andrew Gelman, Jonah Gabry (2015). Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC. arXiv:1507.04544. (url) [2] 渡辺澄夫. 広く使える情報量規準(WAIC)の続き (注4)【WAICとクロスバリデーションの違いについて】 (url) [3] Sumio Watanabe. Comparison of PSIS Cross Validation with WAIC. (url) le

    情報量規準LOOCVとWAICの比較 - StatModeling Memorandum
    mnru
    mnru 2017/06/05
  • 1