この記事は、やたらはてブを稼いでしまった前回の記事の続きです。 ASAのプレスリリース及び声明の中には、確かに「p値に依拠しない新たなアプローチの例」として予測値を重視するアプローチ*5、ベイジアンモデリング、決定理論的アプローチ*6およびfalse discovery rate*7といったものを用いるべき、という趣旨のコメントが入っています。とは言え、重回帰分析とか機械学習のような多変量モデリング(なおかつサンプルサイズも大きい)を伴うテーマならともかく、統計学的仮説検定のようなサンプルサイズも小さい(データも少ない)シチュエーションでどうやるんだよ的な疑問を持つ人も多いのではないかと。 そんなわけで、実際にそれっぽい各種検定の数々をStanによるベイジアンモデリングで代替してみたので、この記事ではその結果をつらつら紹介してみようと思います。テーマは前々回のこちらの記事の1節で取り上げた