第1章 圏・関手・自然変換 1.1 集合と写像から 1.2 圏・対象・射 1.3 圏のデータ構造 1.4 関手・反変関手 1.5 忠実関手と充満関手 1.6 自然変換 1.7 Haskの部分圏 第2章 自然変換と圏同値 2.1 関手圏 2.2 圏同値 第3章 普遍性と極限 3.1 始対象と終対象 3.2 積 3.3 余積 3.4 極限 3.5 余極限 3.6 極限の存在 3.7 余極限の存在 第4章 関手と極限の交換 4.1 関手は錐や余錐を写す 4.2 Hom関手と極限 4.3 Hom関手と余極限 4.4 実行可能な例 4.5 極限を関手とみる 第5章 随伴 5.1 随伴とは 5.2 単位と余単位 5.3 三角等式 5.4 普遍射と随伴 5.5 随伴の同値な言い替え 5.6 随伴と圏同値 5.7 随伴の大局的な自然性 5.8 随伴と極限 第6章 モナドとHaskellのMonad 6.1