タグ

algorithmに関するnegatonのブックマーク (18)

  • 常識を覆すソートアルゴリズム!その名も"sleep sort"! - Islands in the byte stream (legacy)

    TwitterのTLで知ったのだが、少し前に海外掲示板で"sleep sort"というソートアルゴリズムが発明され、公開されたようだ。このアルゴリズムが面白かったので紹介してみる。 Genius sorting algorithm: Sleep sort 1 Name: Anonymous : 2011-01-20 12:22 諸君!オレは天才かもしれない。このソートアルゴリズムをみてくれ。こいつをどう思う? #!/bin/bash function f() { sleep "$1" echo "$1" } while [ -n "$1" ] do f "$1" & shift done wait example usage: ./sleepsort.bash 5 3 6 3 6 3 1 4 7 2 Name: Anonymous : 2011-01-20 12:27 >>1 なん…だと

    常識を覆すソートアルゴリズム!その名も"sleep sort"! - Islands in the byte stream (legacy)
  • 広く知られているinsertion sortのコードは駄目すぎる - やねうらお−よっちゃんイカを食べながら年収1億円稼げる(かも知れない)仕事術

    insertion sortは「挿入ソート」と訳される。(Wikipedia→ http://ja.wikipedia.org/wiki/%E6%8C%BF%E5%85%A5%E3%82%BD%E3%83%BC%E3%83%88 ) ■ 日語版 Wikipediaの日語のページのコードを引用すると次のようになっている。 for (i = 1; i < n; i++) { tmp = data[i]; for (j = i; j > 0 && data[j-1] > tmp; j--) { data[j] = data[j-1]; } data[j] = tmp; }上のコードでは、内側のループでinsertの必要がなかった場合でも最後にdata[j] = tmpでtmp変数をwrite backしており、しかも、insertの必要のなかった場合でもj=iが1回実行される。それらの意味に

    広く知られているinsertion sortのコードは駄目すぎる - やねうらお−よっちゃんイカを食べながら年収1億円稼げる(かも知れない)仕事術
  • ぜひ押さえておきたいコンピューターサイエンスの教科書

    僕はバイオインフォマティクスという生物と情報の融合分野で研究を行っています。東大の理学部情報科学科にいた頃は同僚のマニアックな知識に驚かされたものですが、そのような計算機専門の世界から一歩外に出ると、それが非常に希有な環境だったことに気が付きました。外の世界では、メモリとディスクの違いから、オートマトン、計算量の概念など、コンピューターサイエンスの基礎知識はあまり知られていませんでした。コンピューターサイエンスを学び始めたばかりの生物系の人と話をしているうちに、僕が学部時代に受けた教育のうち、彼らに欠けている知識についても具体的にわかるようになってきました。 バイオインフォマティクスに限らず、今後コンピュータを専門としていない人がコンピューターサイエンスについて学ぶ機会はますます多くなると思われます。そこで、これからコンピューターサイエンスを学ぼうとする人の手助けとなるように、基礎となる参

  • オーダーを極める思考法

    プログラムの実行に掛かる時間を把握しておくのは、プログラミングを行う上で基的な注意点です。今回は、計算量のオーダーについて学びながら、TopCoderのMedium問題を考えてみましょう。 プログラムの実行時間 業務としてプログラミングをされている方には釈迦に説法かもしれませんが、プログラムの実行に掛かる時間を把握しておくのは、プログラミングを行う上で基的な注意点です。そしてこれは、TopCoderなどのコンテストでプログラムを組む際にもよく当てはまります。通常、こうしたことは感覚的に理解している方がほとんどだと思いますが、具体的にどれくらいのループを回すと何秒掛かる、といった基準を持っている人は少ないのではないでしょうか? 非常に基的なことですが、プログラムの実行時間に関して再確認しておきたいと思います。 TopCoderの制限に関して TopCoderでは、実行時間およびメモリ使

    オーダーを極める思考法
  • Web上の膨大な画像に基づく自動画像補完技術の威力 - A Successful Failure

    画像内に映り込んだ所望のオブジェクトを排除し、違和感の無い画像を生成するシーン補完技術に関しては近年複数の研究成果が発表されている。しかし中でも2007年のSIGGRAPHにて米カーネギメロン大のJames HaysとAlexei A. Efrosが発表した手法*1はブレークスルーとなりうる画期的なものだ。 論より証拠、早速適用例を見てみよう。エントリで利用する画像はPresentationからの引用である。元画像の中から邪魔なオブジェクト等の隠蔽すべき領域を指定すると、その領域が補完された画像が自動的に生成される。 アルゴリズム 効果は抜群だがアイデア自体は単純なものだ。Web上には莫大な数量の画像がアップされており、今や対象となる画像の類似画像を一瞬にして大量に検索することができる。そこで、検索された類似画像で隠蔽領域を完全に置き換えてしまうことで違和感の無い補完画像を生成するのだ。

    Web上の膨大な画像に基づく自動画像補完技術の威力 - A Successful Failure
  • マルコフ連鎖で日本語をもっともらしく要約する - ザリガニが見ていた...。

    そもそも、マルコフ連鎖とは何なのか?全く聞いたこともなかった。そして、文章を要約するのはとっても高度なことだと思っていて、自分のレベルではその方法を、今まで思い付きもしなかった。 しかし、以下のようなシンプルなRubyコードでそれが出来てしまうと知った時、目から鱗である...。一体、何がどうなっているのだ?コードを追いながら、マルコフ連鎖を利用するという発想の素晴らしさを知った! 作業環境 MacBook OSX 10.5.7 ruby 1.8.6 (2008-08-11 patchlevel 287) [universal-darwin9.0] mecab utf8環境でインストール済み マルコフ連鎖に出逢う rssを流し読みしていると、以下の日記に目が止まった。(素晴らしい情報に感謝です!) MeCabを使ってマルコフ連鎖 一体何が出来るコードなのか、日記を読んだだけではピンと来なかっ

    マルコフ連鎖で日本語をもっともらしく要約する - ザリガニが見ていた...。
  • 適切なクラスタ数を推定するX-means法 - kaisehのブログ

    K-means法によるクラスタリングでは、あらかじめクラスタ数Kを固定する必要があります。HatenarMapsでもK-means法を使っているのですが、クラスタ数は(特に根拠もなく)200個に決め打ちになっていました。 これに対して、X-means法というK-means法の拡張が提案されていることを知りました。X-means法を使うと、データに応じて最適なクラスタ数を推定できます。 K-means and X-means implementations http://www-2.cs.cmu.edu/~dpelleg/download/xmeans.pdf X-means法の考え方は、K=2で再帰的にK-means法を実行していくというもので、クラスタの分割前と分割後でBIC(ベイズ情報量規準)を比較し、値が改善しなくなるまで分割を続けます。 調べたところ、Javaのデータマイニングツー

    適切なクラスタ数を推定するX-means法 - kaisehのブログ
  • ACM/ICPC国内予選突破の手引き

    ACM/ICPCの2008年度の大会日程が公開されています。 国内予選は2008年7月4日,アジア地区予選会津大会は2008年10月25日~27日でホスト校は会津大学です。 参加登録締め切りは2008年6月20日です。 ここではACM/ICPC(ACM国際大学対抗プログラミングコンテスト: ACM International Collegiate Programming Contest)で 国内予選を突破するために必要な情報を載せています。 ACM/ICPC自体については2006年度の横浜大会のWebサイトなどを読んでください。 結局のところ,ACM/ICPCで良い成績を残すにはひたすら問題を解く練習をするしかありません。 ですが,出題される問題の多くはいくつかのカテゴリ,例えば探索問題やグラフ問題,あるいは幾何問題などに分類することができます。 つまり,「傾向と対策」が存在します。

  • Spaghetti Source - 各種アルゴリズムの C++ による実装

    ACM/ICPC(プログラミングコンテスト)系列の問題を解くことを目標にして,各種アルゴリズムを C++ で実装してみた.極めて意地が悪い類の問題には対応していないし,特定の入力に対して高速に動くということもない.計算量も最良とは限らない. これらを参考にする方への注意とお願い: これらの記述は正確とは限りません.参考文献を参照することを強く推奨します.間違っている場合は是非教えてください. これらのプログラムは間違っているかもしれません.各人で検証することを強く推奨します.バグがあれば是非教えてください. 分類が怪しいので,これはこっちだろう,ということがあればコメントを下さると助かります. 注意! 現在書き換え中 TODO 分類を正しく行う. 全体的に説明と使い方を詳しく. Verify していないものを Verify. ボロノイ図(いつになることやら……) 基 テンプレート グラフ

  • ベイズを学びたい人におすすめのサイト - download_takeshi’s diary

    ベイジアンフィルタとかベイズ理論とかを勉強するにあたって、最初はなんだかよくわからないと思うので、 そんな人にお勧めのサイトを書き残しておきます。 @IT スパム対策の基技術解説(前編)綱引きに蛇口当てゲーム?!楽しく学ぶベイズフィルターの仕組み http://www.atmarkit.co.jp/fsecurity/special/107bayes/bayes01.html いくつかの絵でわかりやすく解説してあります。 自分がしるかぎり、最もわかりやすく親切に解説してる記事です。数学とかさっぱりわからない人はまずここから読み始めるといいでしょう。 茨城大学情報工学科の教授のページから http://jubilo.cis.ibaraki.ac.jp/~isemba/KAKURITU/221.pdf PDFですが、これもわかりやすくまとまってます。 初心者でも理解しやすいし例題がいくつかあ

    ベイズを学びたい人におすすめのサイト - download_takeshi’s diary
  • K-means法によるクラスタリングのスマートな初期値選択を行うK-means++ - kaisehのブログ

    K-means法は、入力データからK個のランダムな個体を初期クラスタの中心として選択し、以降、クラスタの重心を移動させるステップを繰り返すことでクラスタリングを行う非階層的手法です。K-means法はシンプルで高速ですが、初期値依存が大きいのが弱点で、不適切な初期値選択をすると間違った解に収束してしまいます。 以下は、Introduction to Information Retrievalの16章に出てくる例です。 {d1, d2, ..., d6}をK=2でクラスタリングする場合、{{d1, d2, d4, d5}, {d3, d6}}が大域最適解ですが、初期クラスタの中心をd2, d5で与えると、{{d1, d2, d3}, {d4, d5, d6}}という誤った解に収束してしまいます。 この問題を改善するK-means++という手法を見つけたので、試してみました。 K-means+

    K-means法によるクラスタリングのスマートな初期値選択を行うK-means++ - kaisehのブログ
  • 講義資料 配列解析アルゴリズム特論I 情報生命科学基礎/演習 他 -渋谷哲朗

    平成20年度 東京大学大学院 情報理工学系研究科・コンピュータ科学専攻 配列解析アルゴリズム特論I 4/10 4/17 4/24 5/1 5/8 5/15 5/22 5/29 (The problem to be reported - in English) 6/5 6/12 6/19 7/3 7/10 7/17 東京大学 理学部・情報科学科 情報科学特別講義3 (情報科学とバイオインフォマティクス) 6/10 7/15 7/22 東京大学大学院 新領域創成科学研究科・情報生命科学専攻 情報生命科学基礎/演習 5/27 6/17 京都大学大学院 薬学研究科・医薬創成情報科学専攻 情報科学概論 6/3 中央大学大学院 理工学系研究科・物理学専攻 物理学特別講義第二 TBA 創価大学工学部 生命情報工学科 TBA TBA 戻る Copyright (c) 2004- Tetsuo

  • MapReduce - naoyaのはてなダイアリー

    "MapReduce" は Google のバックエンドで利用されている並列計算システムです。検索エンジンのインデックス作成をはじめとする、大規模な入力データに対するバッチ処理を想定して作られたシステムです。 MapReduce の面白いところは、map() と reduce() という二つの関数の組み合わせを定義するだけで、大規模データに対する様々な計算問題を解決することができる点です。 MapReduce の計算モデル map() にはその計算問題のデータとしての key-value ペアが次々に渡ってきます。map() では key-value 値のペアを異なる複数の key-value ペアに変換します。reduce() には、map() で作った key-value ペアを同一の key で束ねたものが順番に渡ってきます。その key-values ペアを任意の形式に変換すること

    MapReduce - naoyaのはてなダイアリー
  • 文書比較(diff)アルゴリズム

    文書比較(diff)アルゴリズム 前のドキュメント 次のドキュメント ViViの文書比較(diff)機能で使用しているアルゴリズムについて解説する。 これらのアルゴリズムは Myers 氏らの論文によるもので、氏は筆者のためにわざわざ論文をWebサイトで入手可能な形式にしてくださった。この場を借りてお礼申し上げる。 オリジナル論文は以下のWebサイトから入手可能である。 http://www.cs.arizona.edu/people/gene [1] E.W.Myers, "An O(ND) Difference Algorithm and Its Variations", Algorithmica, 1 (1986), pp.251-266 [2] S. Wu, U. Manber, G. Myers and W. Miller, "An O(NP) Sequence Comparis

  • http://ja.doukaku.org/

  • 生年月日から年齢を計算する簡単な計算式 - sanonosa システム管理コラム集

    インフラエンジニアの教科書」シリーズや「クラウドエンジニアの教科書」などの著者。現在(株)ハートビーツ勤務。LINE社元創業メンバー。K-POP/韓国語/お酒/サイゼリヤワイン好き。

    生年月日から年齢を計算する簡単な計算式 - sanonosa システム管理コラム集
  • [空を飛ぶ鳥の群れの動きを再現するアルゴリズムの論文] Craig Reynolds: Flocks, Herds, and Schools: A Distributed Behavioral Model

    Published in Computer Graphics, 21(4), July 1987, pp. 25-34. (ACM SIGGRAPH '87 Conference Proceedings, Anaheim, California, July 1987.) Flocks, Herds, and Schools: A Distributed Behavioral Model 1 Craig W. Reynolds Symbolics Graphics Division [obsolete addresses removed 2] Abstract The aggregate motion of a flock of birds, a herd of land animals, or a school of fish is a beautiful and familiar par

  • RenderNote - RenderNote

    Render Note これは、Render Note である... Render Note のルール 13 日以内に更新をし続けないと所有者は死亡してしまう しかしこれは嘘ルールらしい コンピュータグラフィックスのレンダリングアルゴリズムや理論についてのメモをまとめたものです。 コンパイラ コンパイラツール シェーダコンパイラ サンプリング 乱数 モンテカルロ法などで使われる。 低い違い量列 主に準モンテカルロ法で用いられるサンプル列。準乱数, LDS とも呼ばれる。 サンプリングパターン 光輸送 メトロポリス光輸送 パストレーシング レンダリング グラフィックス一般 モンテカルロレイトレーシング 逐次モンテカルロ法 空間データ構造 交差判定 BRDF レイ微分 省メモリレンダリング メッシュ圧縮 大域照明入門 数学 球充填問題 クリフォード代数 モンテカルロ法 モンテカルロ積分 マ

  • 1