You signed in with another tab or window. Reload to refresh your session. You signed out in another tab or window. Reload to refresh your session. You switched accounts on another tab or window. Reload to refresh your session. Dismiss alert
就活も無事終わったので,一番やりたかったAlphaGoの論文を翻訳しました。 ご存知の通り,長らく世界最強だった囲碁棋士イ・セドル九段を破ったGoogleの囲碁プログラムです。 論文の内容に触れつつ何となく解説入れていきたいと思います。なるべく囲碁やDeepLearningを知らない初心者の人とかでも仕組みを理解できるように分かりやすく書いていければいいなと思います。 原題は"Mastering the game of Go with deep neural networks and tree search"。 とりあえず最初の要約の訳から。 謎の単語とかは後から説明入れるので,さらっと流し読みしていただければ。 囲碁はこれまでAIにとってとても難しいゲームだとみなされてきた。それは探索範囲がとても広いことと,盤面の評価が難しいため。 この論文では,コンピュータを用いた囲碁の新しいアプロー
Googleが開発した囲碁ソフトのAlphaGoが、世界で初めてプロ棋士に勝ったコンピュータとして大きなニュースになっています。Nature誌に論文が掲載されたのですが、仔細に読むといくつか不可解な点がありましたので、調査・考察してみました。 AlphaGoの論文はこちらから見えます。プロ棋士に勝ったこともありますが、何よりコンピュータ囲碁開発者(及び隣の分野のコンピュータ将棋開発者)を驚かせたのは、「既存の他の囲碁プログラムと対戦させた結果、495戦494勝だった」との報告でした。この報告は衝撃的で、これを読んだ他のコンピュータ囲碁開発者たちからは「俺の今までの努力が否定された」「目標を見失ってしまった」などの悲嘆の発言が相次ぐ始末でした。 論文から、AlphaGo、対戦相手のプロ棋士、及び他のソフトのレーティングを示したグラフを引用します。 CrazyStoneとZenはこれまでは最強
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く