タグ

関連タグで絞り込む (2)

タグの絞り込みを解除

検索とLLMに関するnunnununのブックマーク (1)

  • RAGのSurvey論文からRAG関連技術を俯瞰する - 元生技のデータサイエンティストのメモ帳

    大規模言語モデル (LLM) の学習データに含まれない知識(各社の特有の書類など)を踏まえてLLMに回答させる際に最早必須となってきたRAG (Retrieval-Augumented Generation)。 今回はそんなRAGのSurvey論文を元に、RAGの変遷や構成要素、新たに出てきた技術を俯瞰していきます。 Survey論文へのリンクはこちら arxiv.org RAGとは LLMはそれ単体で回答させると、質問によってはハルシネーションや学習時のデータにはなかった情報を生成時に加味できないといった問題から正しくない回答を生成することが多々あります。例えば世間一般に公開されていない自社の就業規則や業務標準についてをChatGPTに質問しても、正しい回答は得られません。 そのような問題への対応としてRAGが使われます。 「LLM単体で適切な回答を生成できないなら、ユーザーの質問を元に

    RAGのSurvey論文からRAG関連技術を俯瞰する - 元生技のデータサイエンティストのメモ帳
  • 1