今回は、実問題を解くためのベイズ学習による機械学習アルゴリズムの構築方法に関してざっくり俯瞰してみたいと思います。ここで解説するフローは僕が実問題にアプローチする際に意識しているものですが、おそらくこれはベイズ学習のみならず、広く一般的な統計モデリングや機械学習の問題解決にも適用できると思います。 <アルゴリズムの開発フロー> あまりファンシーな図でなくて申し訳ないですが、これから1つ1つの項目と各々の遷移に関して説明していきます。 1、データ・課題の整理をする まず、機械学習を使って解きたい問題や実現したいサービスを定義してみます。データはあるんだけど何をして良いかわからない、という場合もあるかもしれませんが、そういうときでもとりあえず何かしらの目標を仮置きしてみるのが良いかと思います。基本的に機械学習でできることは「見えない情報の予測」であると考えればアイデアが発想しやすいかもしれませ