統計学者は、さまざまな機械学習のモデルに関して、複雑な推論を行うべく多くの時間を費やしてきましたが、実は、これを完全に一般化できる非常に簡単で単純な方法があります。テストセットにある2つのモデルのパフォーマンスを、対応のあるt検定を使って比較するのです。 以下に詳細を記載します。 ある真の分散 $ (X,Y) $ から独立同分布で導かれた $n$ 対の $ (x,y) $ があるとしましょう。 “機械学習” は、 $ (x,y) $ の例が与えられた時、 $ x $ を使って $ y $ を推定しようとする問題です。 最終的に、 $ y $ の妥当な推定と思われる関数 $ f(x) $ を生成します。 典型的には損失関数 $ L(y,f(x)) $ を有していますが、この損失関数とは、推定がどれほど良好かを表すものです。 推定量は、期待損失 $ L(f)=E[L(Y,f(X))] $ によ
![機械学習のための仮説検定 | POSTD](https://cdn-ak-scissors.b.st-hatena.com/image/square/c1327d702fd320fcfa4044611953ae4942cfc891/height=288;version=1;width=512/https%3A%2F%2Fpostd.cc%2Fwp%2Fwp-content%2Fuploads%2F2017%2F05%2F0508-500x182.png)