統計学者は、さまざまな機械学習のモデルに関して、複雑な推論を行うべく多くの時間を費やしてきましたが、実は、これを完全に一般化できる非常に簡単で単純な方法があります。テストセットにある2つのモデルのパフォーマンスを、対応のあるt検定を使って比較するのです。 以下に詳細を記載します。 ある真の分散 $ (X,Y) $ から独立同分布で導かれた $n$ 対の $ (x,y) $ があるとしましょう。 “機械学習” は、 $ (x,y) $ の例が与えられた時、 $ x $ を使って $ y $ を推定しようとする問題です。 最終的に、 $ y $ の妥当な推定と思われる関数 $ f(x) $ を生成します。 典型的には損失関数 $ L(y,f(x)) $ を有していますが、この損失関数とは、推定がどれほど良好かを表すものです。 推定量は、期待損失 $ L(f)=E[L(Y,f(X))] $ によ