タグ

あとで読むと数学に関するpan150-051のブックマーク (11)

  • 中日新聞:自動車工場のガロア体 QRコードはどう動くか

    その誕生を地元新聞も経済新聞も記事にしなかった。2年後、『コードの情報を白黒の点の組み合わせに置き換える』と最下段のベタ記事で初めて紹介された時、その形を思い浮かべることができる読者はいなかった。いま、説明の必要すらない。QRコードはなぜ開発され、どう動くのだろうか。 QRコードは、自動車生産ラインの切実な要請と非自動車部門の技術者の「世界標準の発明をしたい」という野心の微妙な混交の下、1990年代前半の日電装(現デンソー)で開発された。 トヨタグループの生産現場では、部品名と数量の記された物理的なカンバンが発注書、納品書として行き来することで在庫を管理する。そのデータ入力を自動化するバーコード(NDコード)を開発したのがデンソーだ。 バブル全盛の1990年ごろ、空前の生産台数、多様な車種・オプションに応えるため、部品も納入業者も急激に増え、NDコードが限界を迎えていた。63桁の数字しか

  • 旧限界数学ゼミガール

    某所に投稿していた限界数学ゼミガールのまとめです(2019.11.27 ~ 2019.12.22) 公理的集合論と数理論理学がメインです。 第一話 「巨大基数の崩壊」 第二話 「クレパの木」 第三話 「ペアノの公理系」 第四話 「ストーンの表現定理」 第五話 「ゲーデルの不完全性定理」 おまけ 最初期の落書きです この頃から寝ている子が頭が良いキャラ(議論が詰まった時のブロックバスター)というのはぼんやりながら固まってました(笑)

    旧限界数学ゼミガール
  • 数学とプログラミングの勉強を開始して、何度も挫折して今に至る軌跡を晒す

    2013年の秋、その時の自分は30代前半だった。 衝動的に数学を学び直すことにした。 若くないし、数学を学びなおすには遅すぎると思って尻ごみしていたが、そこを一念発起。 というか軽い気持ちで。ぶっちゃけると分散分析とやらに興味を持ったから。 数学というか統計かな。 統計的に有意差があったといわれてもその意味がさっぱりだった。 一応、理系の大学を出てるので、有意差という単語をちょいちょい耳にはしていたが、 「よくわかんないけどt検定とかいうやつやっとけばいいんでしょ?」 くらいの理解だった。 で、ありがちな多重比較の例で、3群以上の比較にt検定は使っちゃダメだよっていう話を聞いて、なんか自分だけ置いてけぼりが悔しくなって、Amazonをポチッとしたのが全ての始まり。 あと、あの頃はライン作業の工員だったから、脳が疲れてなかったし。 そんなわけで、自分の軌跡を晒してみる。 みんな数学とかプログ

    数学とプログラミングの勉強を開始して、何度も挫折して今に至る軌跡を晒す
  • 数学における「自明」の意味|さのたけと

    一昨日、数学における「自明」の意味について ツイート したところ一定の反響がありました。 数学の教科書において「自明」「明らか」といった言葉は頻出でありながら、文でその意味がちゃんと説明されることは稀で、結果としてそれらの言葉を 誤解 している人や、それらの言葉が使われることに 圧力・反感 を感じる人も一定の割合でいるようです。 この記事では、その言葉の意味を説明すると共に、なぜそれらの言葉が数学において必要であるのかを解説してみたいと思います。 背景三日前、 数学系 YouTuber の数学野郎さんが 「ひろゆきに影響された数学系YouTuber」という(とても面白い)動画を公開していました。 彼はその中で「√2 が無理数であることを証明するには、まず √2 が実数であることを示さなければならない」と主張していました。それに対して「√2 が実数であることは自明であって欲しい」とコメント

    数学における「自明」の意味|さのたけと
  • LOG関数で2を底とする対数(二進対数)とO(logN)の意味を知ることは情報処理の基本である【Excel】 - わえなび ワード&エクセル問題集 waenavi

    対数のlogを勉強するときにまず最初に習得するのは常用対数です。 【LOGLOG10関数】Excelで10の累乗と常用対数が使えたら数値の桁数が計算できます 常用対数を習得したら次に習得するのが2の累乗と2を底とする対数です。学生の時に、2,4,8,16,32・・・と2の累乗を覚えた人もいるのではないでしょうか? 大人であれば、2を10回かけたら1024(=約1000)になることを知っておいても損はないでしょう。携帯電話の「ギガ」はもともと2を30回かけると約10億=1ギガの情報量になるところからきています。2の累乗と2を底とする対数を理解することは情報処理を理解する第一歩と言っても過言ではありません。 そこで、今回は、Excelで2の累乗と2を底とする対数を求める方法とその応用について解説します(2進数については深入りしません)。 目次 1.まずはExcelで2の累乗の性質を考えてみよ

    LOG関数で2を底とする対数(二進対数)とO(logN)の意味を知ることは情報処理の基本である【Excel】 - わえなび ワード&エクセル問題集 waenavi
  • 数学ガールオタクが初見VTuberの積分配信にめちゃくちゃ感動したメモ1|kqck

    私はタイムラインとトレンドを一切見ないタイプのツイ廃なので、流行の話題に乗り遅れることが多々ある。(それでいいと受け入れている) そのため「不登校だった(?)VTuberが積分についてイチから勉強する配信」が少し前に話題になっていたらしいと今さら知った。 私はVTuberオタクではない。ときどきのらきゃっとさんの放送を観るくらいで、今をときめくホロライブとかにじさんじについては何も知らない。 ただ、私は数学ガールのオタクである。 数学ガールとは、ラノベ風の数学読み物シリーズだ。ラノベと言っても、扱う数学は高校〜大学レベルかそれ以上と、ガチである。(派生した『数学ガールの秘密ノート』シリーズでは中学〜高校レベルの易しい内容を扱っている) 私は当に数学ガールシリーズが好きで好きでたまらなく、約1年前からはレビュアーとして出版前の原稿を読ませて頂いている。だから「著者からの回し者とかではござ

    数学ガールオタクが初見VTuberの積分配信にめちゃくちゃ感動したメモ1|kqck
  • 能力の高いプログラマーは数学力より言語能力が高い - ナゾロジー

    プログラミングに必要な素質は数学力よりも言語能力という研究結果プログラミングの学習は第2外国語の学習と同じ脳の場所を使う プログラミングに馴染みのない人にとって、プログラム言語は非常に厄介に感じるものです。 特にこれまでの通説では「プログラミングは数学力に通じる」とされており、文系出身者にとっては、より一層の苦手意識を感じさせる要素になっていました。 しかし今回、アメリカの研究者らによって行われた研究によって、プログラム言語の学習効率は主として言語能力に依存していることがわかりました。 数学の専門知識や計算能力の介在する余地は想像より遥かに少なかったのです。 小説や詩の文面にキラリと光るセンスを感じ取る能力がある人は、プログラマー適性があるかもしれません。 しかし研究者たちは、どのようにプログラミング適性と言語能力の相関関係をみつけだしたのでしょうか? 研究内容はシアトルにあるワシントン大

    能力の高いプログラマーは数学力より言語能力が高い - ナゾロジー
  • またブクマカーが知ったかぶってるし

    お前らって当に知ったかぶるんだなぁ 高校で行列の計算方法を習ってない事が、その後の数学の学習でデメリットになると思うか?線形独立、線形従属の概念を学んで行列式が求まること、求まらない事の幾何的な意味を知り、代数法則を知り多次元行列と部分空間の価値を理解した上でのアフィン変換行列があっての三次元CGでのアフィン変換がある。概念を理解しないで単に行列の計算が出来る程度の教育なんて無価値なんだからなくなって正解なんだよ。必要な人間は大学で線形代数をやるときに、法則と同時に演算方法の原理原則を理解すればいいし、逆行列の計算方法を覚えればいいんだよ。固有値、固有ベクトルの意味が理解できない半端なプログラマが増えてるのって、高校での機械的な教育のせいだろうとすら思ってる。行列使って連立方程式が解けることを知ってる事が、どれだけ意味あるんだろうね? ブクマカ機械学習がーとかAIがーとか言うけど、必要

    またブクマカーが知ったかぶってるし
  • 【講演】『大人が数学を学び直すには』 - 永野裕之のBlog

    講演のご依頼をお受けします。 小・中・高の同級生が経営する株式会社Tスポットの社員さんに向けて、『大人が数学を学び直すには』というテーマで講演をさせていただきました。 講演で使ったスライドの一部をご紹介します。 料理に喩えるなら、「数学者になる」というのは一流店のコックになるようなものです。このレベルに達するには才能が必要でしょう。対して、「大学入試を突破する」や「仕事や生活に(数学を)活かす」というのは、冷蔵庫の残り物でパッと美味しいものを作ってしまうというレベルです。これは、最初から簡単にできることではないかもしれませんが、素材についての確かな知識を持ち、調理法についてその意味が分かりさえすれば、誰にでも到達できるレベルです。 《参考》 日数学検定協会の会長やNHK高校講座「数学基礎」の講師も務められた秋山仁先生の著作『数学に恋したくなる話 』の中から「理系大学進学に必要な4つの能力

    【講演】『大人が数学を学び直すには』 - 永野裕之のBlog
  • 中学生の数学理解の実態【数と式】編 - 中高数学教育序説-はじめの0.5歩-

    先日2018年4月17日は全国学力・学習状況調査が行われた日でした。 A問題(主として「知識」),B問題(主として「活用」)という形式では最後の年となります。 さて,この全国学力・学習状況調査については様々な意見がありますが,中学生の数学理解の実態について(あくまで紙面調査に過ぎないのでごくごく一端ですが),量的な分析という意味では貴重な情報を提供してくれていると私は捉えています。 以下,まずは【数と式】領域に限って,個人的に興味深い問題とその反応について簡単に見てみたいと思います。 (1)方程式の解の意味 まずは2016年度のA問題から。 この問題の正答率は以下のとおりです。 問題で, を代入すると両辺の値が で等しくなることが示されているわけですが,正答率は48.2%です。 両辺の式の値である を「方程式の解」としている生徒が30.9%います。 こんな分析もされています。 A3(1)は

    中学生の数学理解の実態【数と式】編 - 中高数学教育序説-はじめの0.5歩-
  • 日本の中心はどの県だ?グラフ理論(ネットワーク)の基本的な諸概念 - アジマティクス

    Q:これは何の構造を表しているでしょう? グラフ理論 上の構造のように、頂点(ノードともいいます)の集まりと、2つの頂点をつなぐ辺(エッジともいいます)の集まりでできたもののことを「グラフ」あるいは「ネットワーク」と呼び*1、このような構造を研究する分野こそが「グラフ理論(Graph theory)」です。今回はそんなグラフを使うと、身近なものの新たな側面が見えてくる話。 (余談ですが「グラフ」という用語は、数学だと関数のグラフとか円グラフみたいなやつもあって検索精度が悪いです。グラフ理論に関してわからないことがあった場合に「グラフ ○○」や「グラフ理論 ○○」とググるよりも、「ネットワーク ○○」とググったほうが得たい情報にリーチしやすいというライフハックが知られています) さて、冒頭のグラフです。グラフ理論の知識なんかひとつもなくても、このグラフから読み取れることはいくつもあります。例

    日本の中心はどの県だ?グラフ理論(ネットワーク)の基本的な諸概念 - アジマティクス
  • 1