タグ

ブックマーク / www.r.dl.itc.u-tokyo.ac.jp/~nakagawa (3)

  • プライバシ保護データマイニング (PPDM)

    プライバシ保護データマイニング (PPDM) 東京大学 中川裕志 2002年くらいから伸びてきた分野です。最近は機械学習、 データ工学系の学会で相当数の論文が発表されています。 こういうご時勢ですから、ひょっとすると重要な技術要素 になるかもしれません。 個人情報保護が叫ばれる 複数の企業、組織が協力しないと日は どんどん遅れていく PPDMの基礎概念 2種類のPPDM  摂動法  データベースに雑音を加え、利用者がデータベースに質 問しても真のデータベースの内容が利用者には取得でき ないようにする  プライベートな情報は漏れないようにしたいが、一方で できるだけ正確なデータマイニング結果も得たい!  暗号法  データ保持者をパーティと呼ぶ。複数のパーティが自分 のデータは公開鍵暗号で暗号化する。当然、他のパー ティには自分のデータは知られない。暗号化したまま何 らかの計算を

  • 統計的機械学習入門

    統計的機械学習入門(under construction) 機械学習歴史ppt pdf 歴史以前 人工知能の時代 実用化の時代 導入ppt pdf 情報の変換過程のモデル化 ベイズ統計の意義 識別モデルと生成モデル 次元の呪い 損失関数, bias, variance, noise データの性質 数学のおさらいppt pdf 線形代数学で役立つ公式 確率分布 情報理論の諸概念 (KL-divergenceなど) 線形回帰と識別ppt pdf 線形回帰 正規方程式 正規化項の導入 線形識別 パーセプトロン カーネル法ppt pdf 線形識別の一般化 カーネルの構築法 最大マージン分類器 ソフトマージンの分類器 SVMによる回帰モデル SVM実装上の工夫 クラスタリングppt pdf 距離の定義 階層型クラスタリング K-means モデル推定ppt pdf 潜在変数のあるモデル EMアル

  • 統計的機械学習(Hiroshi Nakagawa)

    統計的機械学習 (under construction) 導入ppt pdf 情報の変換過程のモデル化 ベイズ統計の意義 識別モデルと生成モデル 次元の呪い 損失関数, bias, variance, noise 数学のおさらいppt pdf 線形代数学で役立つ公式 情報理論の諸概念 (KL-divergenceなど) 指数型分布族、自然共役 正規分布(条件付き、および事前分布) 評価方法ppt pdf 順位なし結果の評価(再現率、精度、適合率、F値) 順位付き結果の評価 線形回帰と識別ppt pdf 線形回帰 正規方程式 正規化項の導入 線形識別 カーネル法ppt pdf 線形識別の一般化 カーネルの構築法 最大マージン分類器 ソフトマージンの分類器 SVMによる回帰モデル SVM実装上の工夫 モデル推定ppt pdf 潜在変数のあるモデル EMアルゴリズム 変分ベイズ法 Expecta

  • 1