分かっているようで意外と分かっていないのが回帰分析です。回帰分析の考え方をできるだけ図だけで説明した資料を作りましたので、適宜ご参照ください。 「(ほぼ)図(だけ)で説明する回帰分析」(PDF) 主な内容は、以下のとおりです。 説明変数と撹乱項の相関の理解 予測値の信頼区間をプロットすることの重要性の理解 「変数をコントロールする」ということで曖昧に理解されている内容の理解
分かっているようで意外と分かっていないのが回帰分析です。回帰分析の考え方をできるだけ図だけで説明した資料を作りましたので、適宜ご参照ください。 「(ほぼ)図(だけ)で説明する回帰分析」(PDF) 主な内容は、以下のとおりです。 説明変数と撹乱項の相関の理解 予測値の信頼区間をプロットすることの重要性の理解 「変数をコントロールする」ということで曖昧に理解されている内容の理解
統計的機械学習入門(under construction) 機械学習の歴史ppt pdf 歴史以前 人工知能の時代 実用化の時代 導入ppt pdf 情報の変換過程のモデル化 ベイズ統計の意義 識別モデルと生成モデル 次元の呪い 損失関数, bias, variance, noise データの性質 数学のおさらいppt pdf 線形代数学で役立つ公式 確率分布 情報理論の諸概念 (KL-divergenceなど) 線形回帰と識別ppt pdf 線形回帰 正規方程式 正規化項の導入 線形識別 パーセプトロン カーネル法ppt pdf 線形識別の一般化 カーネルの構築法 最大マージン分類器 ソフトマージンの分類器 SVMによる回帰モデル SVM実装上の工夫 クラスタリングppt pdf 距離の定義 階層型クラスタリング K-means モデル推定ppt pdf 潜在変数のあるモデル EMアル
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く