2022年11月18日のブックマーク (1件)

  • 大規模言語モデルの訓練で50トン、見えてきたAIのCO2排出量

    大規模言語モデルの構築に伴い、二酸化炭素が大量に排出される。AIスタートアップ企業ハギング・フェイスは業界で初めて、AIモデル構築のライフサイクル全体における二酸化炭素排出量を推定する手法を考案した。 by Melissa Heikkilä2022.11.18 17 16 大規模言語モデル(LLM)には不都合な秘密がある。訓練と運用に大量のエネルギーが必要になることだ。その上、大規模言語モデルのカーボン・フットプリント(CFP)が実際どれほど大きいのか、正確なところはいまだ若干謎に包まれている。人工知能AI)スタートアップ企業であるハギング・フェイス(Hugging Face)は、モデルの訓練中だけでなく、ライフサイクル全体にわたっての排出量を見積もることで、より正確にカーボン・フットプリントを推定できる、新たなよりよい手法を編み出したという。 AIによる環境への影響を評価する取り組みを

    大規模言語モデルの訓練で50トン、見えてきたAIのCO2排出量