ブックマーク / qiita.com/drken (6)

  • 三角関数は何に使えるのか 〜 サイン・コサイン・タンジェントの活躍 〜 - Qiita

    「他にこんなのがある」というのがあったら是非いっぱい教えてください! 歴史的に最も古くからある用途は「測量」でしょう。三角関数誕生のキッカケはまさに測量の必要性にありました。比較的日常生活でも見る機会がありそうな用途でしょうか。 ログハウス ケーキカット 震災時の家の傾き推定 現代では「波」としての用途が多いでしょうか。Twitter での様々な人のコメントを見ていても、 おっぱい関数 jpeg 画像 音声処理 といった具合に、波に関する話がかなり多いイメージです。これらの三角関数の使われ方を特集してみます。様々な分野に共通する三角関数の使い方のエッセンスを抽出したつもりですが、これでもかなり分量が多くなりました。摘みいするような感覚で読んでいただけたら幸いです。 2. 三角関数の 3 つの顔 最初に三角関数には大きく 3 つの定義があったことを振り返っておきます。以下の記事にとてもよく

    三角関数は何に使えるのか 〜 サイン・コサイン・タンジェントの活躍 〜 - Qiita
    programmablekinoko
    programmablekinoko 2019/01/07
    フムー
  • ボードゲーム「共円」に学ぶ、ガウス整数 x + yi の世界 - Qiita

    2. 共円定石 メジャーなものから超マイナーなものまで、九路盤定石をすべて公開します!!! 定石 0: 自明パターン 比較的自明な場合として 一直線上 (ルール) 長方形 等脚台形 が挙げられます。いずれも共円であることが自明なパターンですが、このうち等脚台形については、斜め 45 度の等脚台形に注意が必要です。しばしば見逃してしまいます。 余談ですが「斜め 45 度じゃない等脚台形」も一応あります。例えば下図は確かに等脚台形になっています!3 定石 1: 八角形 続いてこれも比較的わかりやすい八角形定石です。内角がすべて $135$ 度になっていて、対称性から共円になることが明快です。しかし右図のように 4 点だけを取り出すと、意外と指摘が難しいことがわかると思います。このような共円をほぼ確実に避けられるようになると脱初心者と言えるでしょう! 八角形定石のサイズにはバリエーションがあり、

    ボードゲーム「共円」に学ぶ、ガウス整数 x + yi の世界 - Qiita
    programmablekinoko
    programmablekinoko 2018/12/10
    凄い / アドベントカレンダーネタばっかりでこういう固い記事は素晴らしい
  • 意外と解説がない!動的計画法で得た最適解を「復元」する一般的な方法 - Qiita

    NTTデータ数理システムでアルゴリズムを探求している大槻 (通称、けんちょん) です。 好きなアルゴリズムは最小カットやマッチングですが、会社ではなぜか「動的計画法が好きな人」と呼ばれています。今回は動的計画法を用いて得られた最適解を復元するための汎用的な方法について紹介します。 0. はじめに 動的計画法を用いて効率的に解くことのできる最適化問題は数多くあります。パッと思いつくだけでも ナップサック問題 迷路などの最短路問題 区間スケジューリング問題 音声認識パターンマッチング問題 レーベンシュタイン距離 発電計画問題 分かち書き 隠れマルコフモデル ... などなど、多種多様な分野の問題を動的計画法によって効率よく解くことができます。このように、分野横断的な活用をできることが、動的計画法をはじめとした数理工学的手法の特長であり醍醐味であると常々感じています。今回は動的計画法によって得ら

    意外と解説がない!動的計画法で得た最適解を「復元」する一般的な方法 - Qiita
  • 「998244353 で割ったあまり」の求め方を総特集! 〜 逆元から離散対数まで 〜 - Qiita

    1. なぜ 998244353 で割るのか? 最初はこのような設問を見るとぎょっとしてしまいますが、実はとても自然な問題設定です。 $998244353$ で割らないと、答えの桁数がとてつもなく大きくなってしまうことがあります。このとき以下のような問題が生じます: 多倍長整数がサポートされている言語とされていない言語とで有利不利が生じる 10000 桁にも及ぶような巨大な整数を扱うとなると計算時間が膨大にかかってしまう 1 番目の事情はプログラミングコンテストに特有のものと思えなくもないですが、2 番目の事情は切実です。整数の足し算や掛け算などを実施するとき、桁数があまりにも大きくなると桁数に応じた計算時間がかかってしまいます。実用的にもそのような巨大な整数を扱うときは、いくつかの素数で割ったあまりを計算しておいて、最後に中国剰余定理を適用して復元することも多いです。 なぜ 9982443

    「998244353 で割ったあまり」の求め方を総特集! 〜 逆元から離散対数まで 〜 - Qiita
    programmablekinoko
    programmablekinoko 2018/08/02
    素晴らしい
  • アルゴリズムとは何か!? ~ 文系理系問わず楽しめる精選 6 問 ~ - Qiita

    今の場合は A さんが 31 歳の場合のストーリーでしたが、A さんが 20 歳~ 35 歳のうちのどの年齢であったとしても、似たようなストーリーで必ず 4 回の質問で当てることができます!(他の例も是非考えてみてください。) ちなみに、このような「真ん中で切ってどちらかに絞って行く」タイプのアルゴリズムには二分探索法という名前がついています。応用情報技術者試験でも頻出のテーマですので馴染みのある方も多いと思います。 1-2. つまり、アルゴリズムとは 上の年齢当てゲームという問題では、相手の年齢を当てる「方法・手順」を二分探索法に基づいて導きました。このようにアルゴリズムとは、 問題を解くための方法・手順 のことです。さて、アルゴリズムと聞くと「コンピュータ上で実装されたプログラム」のことを思い浮かべる方も多いと思いますが、必ずしもコンピュータと関係がある必要はなく、日常生活でも多々登場

    アルゴリズムとは何か!? ~ 文系理系問わず楽しめる精選 6 問 ~ - Qiita
    programmablekinoko
    programmablekinoko 2018/04/25
    大著
  • ‪実世界で超頻出!二部マッチング (輸送問題、ネットワークフロー問題)の解法を総整理!‬ - Qiita

    Deleted articles cannot be recovered. Draft of this article would be also deleted. Are you sure you want to delete this article? 0. はじめに --- 二部マッチング問題は実世界で超頻出 はじめまして。NTTデータ数理システムでアルゴリズムを探求している大槻 (通称、けんちょん) です。 好きなアルゴリズムはタイトルにもある二部マッチングですが、会社ではなぜか「DP が好きな人」と呼ばれています。 以前に動的計画法 (DP) の典型パターンを整理した記事を執筆したのですが、DP と並んで超頻出の話題として二部マッチング問題があります。二部マッチング問題とは、例えばマッチングアプリなどに見られるように、2 つのカテゴリ間で最適なマッチングを構成していく問題です。実

    ‪実世界で超頻出!二部マッチング (輸送問題、ネットワークフロー問題)の解法を総整理!‬ - Qiita
    programmablekinoko
    programmablekinoko 2018/02/02
    二郎マッチング問題に見えた、面白い
  • 1