メルセンヌ数(メルセンヌすう、英: Mersenne number)とは、2の冪よりも 1 小さい自然数、すなわち 2n − 1(n は自然数)の形の自然数のことである。これを Mn で表すことが多い。メルセンヌ数を小さい順に列挙すると となる。メルセンヌ数は2進法表記で n 桁の 11⋯11、すなわちレピュニットとなる。 Mn = 2n − 1 が素数ならば n もまた素数であるが、逆は成立しない (M11 = 2047 = 23 × 89)。素数であるメルセンヌ数をメルセンヌ素数(メルセンヌそすう、英: Mersenne prime)という。なお、「メルセンヌ数」という語で、n が素数であるもののみを指したり[1]、さらに狭義の意味でメルセンヌ素数を指す場合もある[注釈 1]。 Mn が素数ならば n もまた素数であることは、次の式から分かる[2][3]: 2ab − 1 = (2a
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く