タグ

2014年11月26日のブックマーク (2件)

  • ロジスティック回帰 (勾配降下法 / 確率的勾配降下法) を可視化する - StatsFragments

    いつの間にかシリーズ化して、今回はロジスティック回帰をやる。自分は行列計算ができないクラスタ所属なので、入力が3次元以上 / 出力が多クラスになるとちょっときつい。教科書を読んでいるときはなんかわかった感じになるんだが、式とか字面を追ってるだけだからな、、、やっぱり自分で手を動かさないとダメだ。 また、ちょっとした事情により今回は Python でやりたい。Python のわかりやすい実装ないんかな?と探していたら 以下の ipyton notebook を見つけた。 http://nbviewer.ipython.org/gist/mitmul/9283713 こちらのリンク先に2クラス/多クラスのロジスティック回帰 (確率的勾配降下法) のサンプルがある。ありがたいことです。理論的な説明も書いてあるので ロジスティック回帰って何?という方は上を読んでください (放り投げ)。 この記事で

    ロジスティック回帰 (勾配降下法 / 確率的勾配降下法) を可視化する - StatsFragments
    rishida
    rishida 2014/11/26
    いつの間にかシリーズ化して、今回はロジスティック回帰をやる。自分は行列計算ができないクラスタ所属なので、入力が3次元以上 / 出力が多クラスになるとちょっときつい。教科書を読んでいるときはなんかわかった感
  • EMNLP2014読み会で単語の表現学習と語義曖昧性解消を同時に解く論文を紹介しました

    先週の土曜日にPFIで行ったEMNLP2014読み会で、Skip-gramモデル(word2vec)と語義曖昧性解消を同時に解く論文の紹介をしました。 発表スライドはこちら。 単語の表現学習と語義曖昧性解消を同時に解く話は、もう一つ論文がありましたが、なんだかいまいちだったのでこちらになりました。 要点だけ整理します。 Skip-gramモデルは、単語に対するベクトル表現を学習する手法として注目を集めています。 このモデルは、ある単語の出現が周囲の出現単語に影響を与えるため、中心単語のベクトルと周囲の単語のベクトル(word2vecの実装では両者は別のベクトルとして区別します)の内積のexpに比例する確率で、周辺単語が決定されるというモデルを置きます(詳細は以前のスライド参照)。 実データを使って、対数尤度が最大になるようにベクトルを学習します。 ここまでがSkip-gramでした。 この

    rishida
    rishida 2014/11/26
    似たようなことやってた\(^o^)/