import torch x = torch.tensor([1., -1.]) w = torch.tensor([1.0, 0.5], requires_grad=True) loss = -torch.dot(x, w).sigmoid().log() loss.backward() print(loss.item()) print(w.grad)
TOP > Article Theme > AI(人工知能)ニュース > 東大松尾研究室、無料でディープラーニングや自然言語処理を学べる講座開講 松尾豊氏が講師を務める講座も 東京大学 松尾研究室は1月29日から、無料でディープラーニング(深層学習)や自然言語処理について学べる、短期間のオンライン講座の受講者を募集している。対象は学生(大学院、大学、高専、専門学校生、高校、中学など)。募集は2月8日(月)の10時00分まで。選考結果は2月15日(月)までに受講決定者にメールで連絡する。 今回、募集しているオンライン講座は「スプリングセミナー2021:深層強化学習」「プリングセミナー2021:深層生成モデル」「プリングセミナー2021:Deep Learning for NLP講座」の3つ。なお、人工知能(AI)研究の第一人者で、東京大学 松尾研究室を率いる松尾豊氏は企画・監修だけではなく、
異常検知について勉強したのでまとめておきます。 参考文献 下記文献を大いに参考にさせていただきました: [1] Ruff, Lukas, et al. "A Unifying Review of Deep and Shallow Anomaly Detection." arXiv preprint arXiv:2009.11732 (2020). [2] 井手. "入門 機械学習による異常検知―Rによる実践ガイド" コロナ社(2015) [3] 井手,杉山. "異常検知と変化検知 (機械学習プロフェッショナルシリーズ)" 講談社サイエンティフィク(2015) [4] 比戸. "異常検知入門" Jubatus Casual Talks #2(2013) [5] Pang, Guansong, et al. "Deep learning for anomaly detection: A rev
巷ではDeep Learningとか急に盛り上がりだして、機械学習でもいっちょやってみるかー、と分厚くて黄色い表紙の本に手をだしたもののまったく手が出ず(数式で脳みそが詰む)、そうか僕には機械学習向いてなかったんだ、と白い目で空を見上げ始めたら、ちょっとこの記事を最後まで見るといいことが書いてあるかもしれません。 対象 勉強に時間が取れない社会人プログラマ そろそろ上司やらお客様から「機械学習使えばこんなの簡単なんちゃうん?」と言われそうな人 理系で数学はやってきたつもりだが、微分とか行列とか言われても困っちゃう人 この記事で行うこと 数学の基礎知識に慣れるための、数式が最初から出てこないプログラマ向けの数学入門書の紹介 機械学習の初学者には鉄板の、オンライン講座(MOOC)の機械学習コース紹介 環境 WindowsでもMacでもLinuxでも大丈夫(MATLAB/Octaveというツール
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く