タグ

Algorithmとimageに関するrydotのブックマーク (3)

  • わかりやすい画像のdiffを求めて - Qiita

    どうも。フロントエンドエンジニアの @Quramy です。 さて、前回、1日10万枚の画像を検証するためにやったことで書いているとおり、reg-suitという画像に特化した回帰テストツールをメンテしています。 画像回帰テストという文脈において、差分の可視化方法はとても重要なファクターです。なぜなら、画像(=スナップショット)に差分が発生したからといって、それすなわち棄却、というわけではなく、その差分の内容を判断して、意図せぬ変更であれば棄却、意図した変更であればexpectedを更新する必要があります。すなわち、ワークフローに目視による差分のレビューが発生するのです。 そこで、少しだけ異なる2枚の画像について差分を効果的に可視化する、というテーマに向き合ってみました。 主にC++OpenCVでの実装ですが、これらの知識が無くとも読めるよう、コードやAPIへの言及を少なくして、中間画像で説

    わかりやすい画像のdiffを求めて - Qiita
  • マジックカーネル – 画像のリサンプリングのメソッド | POSTD

    マジックカーネルとは? “マジックカーネル”とは、極めて高速で(一番単純なバージョンなら、必要なのは少しの整数加算とビットシフトのみです)、驚くほどの結果を出してくれる効果的な画像のリサンプリングのメソッドです(エイリアシングノイズやリンギング、細かい物体の”Width beat”の発生を防ぎます)。 私がこのマジックカーネルと出会ったのは2006年、一般的に使われているJPEGライブラリのソースコードを扱っていた時のことです。それ以来、この素晴らしい特性を深く探り、任意のリサンプリングファクタのケースにまでこのメソッドを広げました。 このWebページでは、それらの特性を要約して説明し、画像への適用も含めてマジックカーネルのC#のコード実装の全てをご紹介します。 マジックカーネルはどこから来たのか 2006年に私は、JPEGを過剰に圧縮すると発生するブロックノイズを最小限に抑えるいい方法は

    マジックカーネル – 画像のリサンプリングのメソッド | POSTD
  • 大規模画像認識とその周辺

    Image net classification with Deep Convolutional Neural Networks

    大規模画像認識とその周辺
  • 1